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Abstract

In this paper, we propose a new framework for edge-
preserving texture-smoothing filtering to improve the
visibility of images in presence of haze or fog. The pro-
posed framework can effectively achieve strong texture
smoothing while keeping edges sharp, and any low-pass
filter can be directly integrated into the framework. Our
experiments with three popular low-pass filters (Gaus-
sian filter, median filter and bilateral filter) show that
our framework can better preserve the contrast around
edges than the original filters. The visibility restoration
algorithm based on our framework outperforms exist-
ing filtering-based algorithm without losing the speed
advantage compared to non-filtering-based algorithms.

1. Introduction
The presence of haze or fog in images can degrade

the visibility of photographs and may hamper the
performances of some image processing algorithms
in computer vision applications. It is important and
challenging to develop algorithms that can improve
the visibility of haze images. Existing visibility
restoration algorithms using multiple images [5] or
scene depth information [3] are rather limited because
of the acquisition of additional information. Recently,
several algorithms have been proposed to solve the
problem using a single haze image by introducing
some assumptions or priors. Tan [7] turns the problem
into an optimization problem by assuming that the
visibility improved image should have better contrast
and the airlight varies smoothly depending on the
object depth in the scene. Fattal [1] solves the problem
based on the assumption that object surface shading
and medium transmission function of haze should be
locally uncorrelated. He et al. [2] introduce a dark
channel prior which comes from their observation
that the minimum color component over eroded color
channels of outdoor haze image turns out to be closely
related to the medium transmission map of haze. They
use the dark channel to estimate a rough medium

transmission map and then refine it using soft matting
algorithms. However, the common disadvantage of
these three algorithms are that they are too slow to
fulfil the demands of real-time applications. Based
on these pioneering works, Tarel et al. [8] propose a
fast algorithm which treats the problem as a filtering
problem and thus can achieve much faster speed. The
algorithm estimates the medium transmission map
based on edge-preserving smoothing, and then restores
the image using the medium transmission map. The
core step is the edge-preserving smoothing step, where
they utilize median filtering.

(a) Haze image (b) Tarel’s result [8] (c) Our result

(d) Tarel’s result [8] (zoom in) (e) Our result (zoom in)

Figure 1. Visibility restoration results. Appar-
ently, our method outperforms Tarel’s algorithm
[8] around large depth jumps.



The objective of using edge-preserving filtering
in the visibility restoration algorithm is to smooth
textured regions while preserving large scene depth
discontinuities. Two popular edge-preserving filtering
methods are median filtering and bilateral filtering.
Unfortunately, both filtering methods cannot work
well in visibility restoration. Median filter has strong
smoothing ability but can blur edges, while bilateral
filter with small range variance cannot achieve enough
smoothing on textured regions in the visibility restora-
tion algorithm and that with large range variance will
also blur edges. Figure 1 (b) shows the restoration
results of Tarel’s algorithm [8] that utilizes median
filtering. Note that their algorithm cannot remove haze
near large scene depth discontinuities because median
filtering cannot preserve edges well. In this paper,
we present a new edge-preserving texture-smoothing
filtering framework and show that it can generate better
results in visibility restoration of haze images than
existing methods.

2. Background
2.1. Edge-preserving Filtering

The main idea of the median filtering is to run
through all pixels, replacing each pixel value with the
median of neighboring pixel values. Bilateral filtering
[9] is done by replacing the intensity value of a pixel
by the average of the values of other pixels weighted by
their spatial distance and intensity similarity to the orig-
inal pixel. Specifically, the bilateral filter is defined a
normalized convolution in which the weighting for each
pixel q is determined by the spatial distance from the
center pixel p, as well as its relative difference in inten-
sity. Let Ip be the intensity at pixel p and IFp be the
filtered value,

IFp =

∑
q∈Ω

GσS′ (∥p− q∥)GσR
(|Ip − Iq|)Iq∑

q∈Ω

GσS′ (∥p− q∥)GσR
(|Ip − Iq|)

, (1)

where the spatial and range weighting functions GσS′

and GσR
are often Gaussian, and σR and σS′ are

the range and spatial variances, respectively. In this
paper, the image intensities are normalized such that
Ip ∈ [0, 1] and σR is normally chosen between [0, 1].
Let the image width and height be w and h, we choose
σS′ = σS · min(h,w), such that σS is also normally
chosen between [0, 1]. Besides bilateral filter, we also
use σS′ to represent the spatial variance of Gaussian
filter and the radius of median filter in this paper.

2.2. Visibility Restoration Model
The widely adopted model for the formation of im-

age in presence of haze or fog is as follows [4]:

Ip = Jptp +A(1− tp), (2)

where I is the haze image, J is the scene radiance (the
actual appearance of the scene without haze), A is
the atmospheric light (commonly assumed as a global
constant), tp is the medium transmission function
depending on the scene depth. When the image is
represented as a RGB three channels color image, Ip,
Jp, and A are vectors and tp is a scalar. The physical
process of this equation can be described as follows:
the actual radiance Jp at a point p in the scene, is
attenuated by the atmosphere when passing through
the haze, and shifted by an effect of atmospheric light
A which is accumulated when the radiance passing
through the haze. The first term Jptp describes the
direct attenuation of scene radiance, while the second
term A(1− tp) describes the effect of atmospheric light
and is commonly called airlight. The goal of visibility
restoration or dehazing algorithms is to estimate J
given a single haze image I. In order to estimate J, the
common way is to first estimate tp and A.

As can be seen from equation (2), the problem of es-
timating J using only I is severely ill-posed. Additional
assumptions or priors need to be introduced to solve it.
As mentioned in section 1, several methods have been
proposed to solve it by introducing different assump-
tions or priors. In this paper, we follow the filtering-
based method [8] and the additional assumptions and
priors are hereby described explicitly as follows:
• The dark channel [2] of the haze image I is a rough

estimation of term (1− tp) in equation (2);
• The depth of scene objects in an image varies

smoothly except over large depth jumps [7];
• All RGB color images have been white balanced,

which implies that the atmospheric light A can be
simply set to (1, 1, 1) [8].

3. Our Filtering Framework
In this section, we present the details of our

edge-preserving filtering framework and show how
it works differently from the original filters. Given
a grayscale image I as shown in Figure 3 (a) (if the
input is multi-channel image, we process each channel
independently), we first detect the range of the image
intensity values, say [Imin, Imax]. We next sweep a
family of planes at different image intensity levels
Ik ∈ [Imin, Imax], k = {0, 1, ..., N − 1} across the
image intensity range space. The distance between
neighboring planes is set to Imax−Imin

N−1 , where N is a
constant. Figure 2 (b) shows such an example when
N = 5. Smaller N results in larger quantization error
while larger N increases the running time. When
N → +∞ or N = 256 for 8-bit grayscale images, the
quantization error is zero. Also, stronger smoothing
usually requires smaller N .

We define the distance function of a voxel
[I(x, y), x, y] on a plane with intensity level Ik as the



(a) 3D view of Figure 3 (a) (b) Established planes (N = 5)

(c) Distance maps D(Ik) (d) Compute filtered image

Figure 2. Our filtering framework.

truncated Euclidean distance between the voxel and the
plane (as shown in Figure 2 (c)):

D(Ik, x, y) = min(|Ik − I(x, y)|, η · |Imax − Imin|),
(3)

where η ∈ (0, 1] is a constant used to reject outliers
and when η = 1, the distance function is equal to their
Euclidean distance.

At each intensity plane, we obtain a 2D distance map
D(Ik). A low pass filter F is then used to smoothen this
distance map to suppress noise:

DF (Ik) = F(D(Ik)). (4)

Then, the plane with minimum distance value at each
pixel location [x, y] is located by calculating

K(x, y) = argmin
k={0,1,...,N−1}

DF (Ik, x, y). (5)

Let intensity levels i0 = IK(x,y), i+ = IK(x,y)+1, i− =
IK(x,y)−1. Assume that the smoothed distance function
DF (Ik, x, y) at each pixel location [x, y] is quadratic
polynomial with respect to the intensity value Ik, the
intensity value corresponding to the minimum of the
distance function can be approximated using quadratic
polynomial interpolation (curve fitting):

IF (x, y) = i0−
DF (i+, x, y)−DF (i−, x, y)

2(DF (i+, x, y) +DF (i−, x, y)− 2DF (i0, x, y))
,

(6)

which is the final filtered result of our framework at
each pixel location [x, y].

(a) Original (b) Gaussian (c) Median (d) Bilateral

(e) Original (f) Our Gaussian (g) Our median (h) Our bilateral

Figure 3. Filtered results of a synthetic noisy
image. (a) is the original grayscale image, and
is visualized using a color map in (e) for clarity.
(b)-(d): the filtered image obtained using Gaus-
sian filter, median filter, and bilateral filter, re-
spectively. (f)-(h): filtered images obtained using
our edge-preserving filtering framework with the
corresponding filters in (b)-(d).

Apparently, any filter F can be integrated into this
framework by using it to smoothen the distance map
D(Ik) as shown in equation (4). Figure 3 presents the
experimental filtered results of our framework for a
synthetic noisy image. In this experiment, the number
of intensity planes N is set to 16 and η = 0.1. The
parameter settings for low-pass filters are σS = 0.05
and as for bilateral filter, σR = 0.2. As can be seen in
Figure 3, the use of our framework maintains the sharp
intensity edges and greatly suppresses the noise inside
each region.

4. Filtering-based Visibility Restoration
In Tarel’s algorithm [8], they first calculate the min-

imum color components W of the input image I by

Wp = min
c∈{r,g,b}

(Icp) (7)

where p is the location of each pixel in the image. Then
they perform the following filtering on W to get B:

A = median(W ), (8)

B = A−median(|W −A|). (9)

B is used to estimate the transmission map t̃p by

t̃p = 1−min(ϵ ·Bp,Wp), (10)

where the factor ϵ in [0, 1] is to control the strength of
the restoration. Finally, each channel Jc of the restored
image J can be calculated by

Jc
p = 1− (1− Icp)/t̃p, (11)

where c ∈ {r, g, b} for RGB images. A followed
post-processing step of tone mapping is suggested [8]



to make the color look similar to the input image.

Due to the twice median filtering (equation (8) and
(9)) employed in Tarel’s algorithm, it cannot remove
haze near large depth jumps in the scene. On the other
hand, bilateral filter can better preserve object bound-
aries when a small σR is used [9], but most of the tex-
tures are also kept thus it cannot provide enough tex-
ture smoothing in the visibility restoration algorithm.
More aggressive smoothing can be achieved by increas-
ing σR, but the increasing σR reduces the ability of the
bilateral filter to preserve edges and some of the edges
become blurred, as evident from Figure 3 (d). By em-
ploying our filtering framework, we modify the process-
ing steps of visibility restoration as follows:
1) Calculate W using equation (7);
2) Get B by filtering W using our framework;
3) Estimate t̃ using equation (10);
4) Calculate J using equation (11).

5. Experimental Results
In all the experiments conducted in this paper, we

use bilateral filter as the operator F in our filtering
framework. We set the number of intensity planes N
to 16, and set the parameter η in equation (3) to 0.1.
The parameter ϵ in equation (10) is set to 0.95. Figure
1 (b) and (c) show the results of restoring an image
using Tarel’s algorithm and our algorithm, respectively.
The filtering parameters for both algorithms are set to
σS = 0.05, σR = 0.1 (σR is only for our algorithm).
Compared with Tarel’s algorithm, it is obvious that
our algorithm can more effectively remove haze near
large depth discontinuities. Figure 4 shows the result
comparison of another image.

The speed of our algorithm is comparable to Tarel’s
algorithm, while other non-filtering-based visibility
restoration algorithms mentioned in Section 1 are not
comparable to our filtering-based algorithms [8]. We
implement both our algorithm and Tarel’s algorithm
in C++. The bilateral filter in our algorithm is imple-
mented using an O(1) complexity per pixel algorithm
[10] and the median filter in Tarel’s algorithm is
implemented by a fast O(1) median algorithm [6]. Ex-
periments show that our algorithm is only about 2.2×
slower than Tarel’s algorithm on average. Specifically,
the average running time for the image shown in Figure
4 (1024 × 768 pixels) are 0.78 seconds (ours) and
0.35 seconds (Tarel’s) on a PC with Intel Core i7-2600
3.4GHz CPU and 4GB RAM, respectively.

6. Conclusion
We have described a filtering framework for edge-

preserving smoothing, and demonstrated the benefits
of using this framework when applying it to visibility
restoration algorithm, where strong texture smoothing

(a) Haze image (b) Tarel’s result [8] (c) Our result

(d) Tarel’s result [8] (zoom in) (e) Our result (zoom in)

Figure 4. Visibility restoration results. Note that
there is clear improvement around the leaves.

is required and the contrast around edges should be
preserved. In the future, we intend to further improve
our framework and apply it to other applications.
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