
Fast Edge-Preserving PatchMatch for
Large Displacement Optical Flow

Linchao Bao, Student Member, IEEE, Qingxiong Yang*, Member, IEEE, and Hailin Jin, Member, IEEE

Abstract—The speed of optical flow algorithm is crucial for
many video editing tasks such as slow motion synthesis, selec-
tion propagation, tone adjustment propagation, etc. Variational
coarse-to-fine optical flow algorithms can generally produce
high-quality results but cannot fulfil the speed requirement
of many practical applications. Besides, large motions in real-
world videos also pose a difficult problem to coarse-to-fine
variational approaches. We in this paper present a fast optical
flow algorithm that can handle large displacement motions. Our
algorithm is inspired by recent successes of local methods in
visual correspondence searching as well as approximate nearest
neighbor field algorithms. The main novelty is a fast randomized
edge-preserving approximate nearest neighbor field algorithm
which propagates self-similarity patterns in addition to offsets.
Experimental results on public optical flow benchmarks show
that our method is significantly faster than state-of-the-art
methods without compromising on quality, especially when scenes
contain large motions. Finally, we show some demo applications
by applying our technique into real-world video editing tasks.

I. INTRODUCTION

Optical flow estimation is one of the most fundamental
problems in Computer Vision. Since the seminal work of
Horn-Schunck global model [1] and Lucas-Kanade local
model [2], there have been tremendous progresses in this
area. We have algorithms that can handle challenging issues
such as occlusions, motion discontinuities, textureless regions,
etc. However, there are still outstanding problems in existing
optical flow methods, such as large displacement motions and
motion blur. This paper addresses the issue of large displace-
ment motions. In particular, we are interested in fast optical
flow algorithms as speed is crucial for practical applications.

Large displacement motions have been an issue in optical
flow estimation since the beginning. The basic formulation of
optical flow is based on a differential form of the brightness
constancy equation which is invalid for motions larger than the
support of the differential operators. In order to handle larger
motions, traditional methods resort to the multi-scale coarse-
to-fine framework. However, the coarse-to-fine framework suf-

Manuscript received May 22, 2014; revised July 27, 2014; accepted
September 15, 2014. This work was supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China
(Project No. CityU 21201914). The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Dimitrios Tzovaras.
(Corresponding author: Q. Yang)

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

L. Bao and Q. Yang are with the Department of Computer Science
at City University of Hong Kong, Hong Kong S.A.R., China (e-mail:
linchaobao@gmail.com; qiyang@cityu.edu.hk).

H. Jin is with Adobe Research, 345 Park Avenue, San Jose, CA 95110
(e-mail: hljin@adobe.com).

fers from an intrinsic limitation that it fails for fine scale image
structures whose motions are larger than their size. Recently,
there are several algorithms proposed to overcome this intrin-
sic limitation by going beyond the basic differential formula-
tion and incorporating additional correspondence information.
For instance, one can directly search for pixel correspondence
[3]. But the complexity of the search step scales quadratically
with respect to the size of the motion. Robust keypoints are
one reliable source of correspondence information that can be
matched efficiently across entire images but are only available
at sparse image locations. Recently, an algorithm called deep-
matching [4] is proposed to produce dense correspondence
field efficiently, but its huge memory consumption prevents
itself from practical applications. Besides, in order to obtain a
dense flow field, one needs a global optimization step which
is typically computationally expensive [5], [6].

In this paper, we propose to use approximate nearest neigh-
bor field (NNF) for large displacement optical flow estimation.
NNF is a correspondence field indicating pairs of image
patches from two images which are closest in terms of some
patch distance. There is no limitation on the relative distance
between a pair of closest patches which makes NNF a good
source of information for handling large displacement motions.
Moreover, although exact NNF is expensive to compute, there
exist efficient approximate algorithms [7], [8], [9].

In order to obtain optical flow using approximate NNFs,
we need to address two fundamental problems. First, there is
no spatial smoothness in a NNF which means neighboring
patches in one image can have arbitrary matching patches
in the other image. This problem is more pronounced in
homogeneous regions where matching is ambiguous. Thus
most approximate NNF algorithms (such as CSH [8] and KD-
Tree [9] based algorithms) will produce messy fields and are
not suitable for optical flow estimation. Second, occlusions
are not respected in NNF computation, i.e., one will get
matching patches in occluded regions even though they are
meaningless. The second problem can be resolved by explicitly
performing consistency check between forward and backward
flow. To address the first problem, one may attempt to use
global optimization to incorporate motion candidates from a
NNF into an optical flow estimation [10]. However, doing
so may lead to a computationally expensive algorithm which
has limited practical applicability. Instead, motivated by recent
successes of local methods in stereo matching and optical flow
[11], [12], [13] where it is shown that carefully crafted local
methods can reach quality on par with global ones, we address
the problem by increasing the local matching support (patch
size). But increasing patch size leads to two new problems



2

which are motion boundary preservation and algorithm speed.
We address the former problem by introducing a novel edge-
preserving version of PatchMatch [7] and the latter one by
developing a fast approximate algorithm.

This paper extends its conference version [14] with the
following major differences:

1) We provide more explanation of our method (see Section
II), which is omitted in the conference version due to
page limit.

2) We reveal more details about our implementation and
experimental results in Section III.

3) We extend our method with a plane fitting scheme (see
Section III-B) and add the details of the performance of
our method on KITTI benchmark.

4) We apply our method to several real-world applications
and show some examples in Section IV.

A. Related work

It is beyond the scope of this paper to review the entire
literature on optical flow. Instead, we will only discuss the
closely related papers. In particular, we will focus on the
work that addresses large displacement motions. The classical
coarse-to-fine framework for large displacement motions that
is used by most optical flow algorithms was proposed in [15],
[16] and refined in [17]. It generally works well for relatively
large objects but performs poorly on fine scale image structures
which may disappear in coarse scales. This is an intrinsic
limitation of the coarse-to-fine framework. To overcome this
limitation, Steinbruecker et al. [3] proposed to incorporate
correspondence searches in a framework that avoids warping
and linearization. However, the search part is exhaustive for
every pixel in the image which makes the algorithm potentially
slow for large search ranges. Instead of an exhaustive search
at every pixel, the LDOF framework [5] is to only consider
robust keypoints which serve as constraints in an energy-based
formulation. Because keypoints can be matched across entire
images, the algorithm does not suffer from the search range
problem. To further improve the reliability of keypoint match-
ing, the MDP-Flow [6] incorporated a discrete optimization
step before diving into the variational optical flow solver.

Regarding NNFs, PatchMatch [7] was a seminal work and
generated a lot of interests recently because of its compu-
tational efficiency and ability to match patches across large
distance. But most algorithms in this area are proposed for
the NNF problem in terms of reconstruction error [8], [9],
which is different from the dense correspondence problem.
Exceptionally, the work [18] applied PatchMatch to stereo
matching for computing aggregation with slanted support
windows, but they did not address the computational efficiency
after adopting a weighting scheme on the support windows.
A recent work employing NNF for optical flow estimation
is [10], which computes an initial noisy but dense matching
which is cleaned up through motion segmentation.

Our algorithm is closely related to the local methods in
stereo matching and optical flow. Local methods have a long
history in stereo matching. They used to be known as fast
but less accurate compared to globally optimized methods.

But [13] showed that a good local method can perform
equally well. Rhemann et al. [11] successfully applied this
principle to optical flow and obtained an algorithm that ranks
high on the Middlebury flow benchmark. The SimpleFlow
[12] followed the same direction but towards a less accurate
yet faster solution. The PatchMatch Filter [19] adapted the
PatchMatch algorithm onto superpixels and employed the
algorithm from [11] to refine the matching correspondence
between superpixels.

B. Contributions

The main contribution of this work is a fast local optical
flow algorithm that can handle large displacement motions.
Our method is local, i.e., it does not involve optimization over
the entire image and therefore fast. On the other hand, our
method does not sacrifice on quality. We compare our method
against existing ones on MPI Sintel, KITTI, and Middlebury
benchmarks. Our ability to handle large displacement motions
is clearly demonstrated by the top performance on the MPI
Sintel benchmark. In terms of quality, our method outperforms
all other fast methods without compromising on the speed. In
fact, the quality of our method is on par with that of global
ones but the speed is significantly faster.

Our main technical novelty is a fast randomized edge-
preserving approximate nearest neighbor field algorithm. The
key insight is that in addition to similar offsets, neighboring
patches have similar self-similarity patterns. Therefore, we
can propagate self-similarity patterns in a way similar to
propagating offsets as done in [7]. This significantly reduces
the computational complexity. We hope this idea to inspire
other work in generalizing [7] to other applications.

II. OUR APPROACH

Our method follows the traditional local correspondence
searching framework [20] which consists of 4 steps:

1) matching cost computation,
2) cost aggregation,
3) correspondence selection, and
4) refinement.

It is shown that the framework can produce high-quality
optical flow [11], but its computational complexity is linear
in search range.

While reducing the correspondence search range may be
a potential solution, we in this paper address this problem
from another point of view. We notice that, if we use squared
error as the matching cost and use box filtering to perform the
cost aggregation, then steps (1) to (3) are actually equivalent
to searching the nearest neighbors for image patches using
the patch Euclidean distance, which is known to have fast
approximate algorithms that are independent of search range,
such as PatchMatch [7]. However, a direct use of PatchMatch
to estimate optical flow can handle large displacement motions
but tend to introduce visible errors around motion disconti-
nuities as shown in Fig. 1b. To overcome the problems, we
propose a new edge-preserving version of PatchMatch (Sec.
II-A) and a corresponding fast algorithm (Sec. II-B).



3

The techniques used in [11] for the refinement step (i.e.,
consistency check and weighted median filtering [21], [22]) are
also employed in this paper except that we suggest to produce
subpixel accuracy with a more efficient technique – paraboloid
fitting, which is a 2D extension from the 1D parabola fitting – a
commonly adopted technique in stereo matching [23]. Details
are presented in Sec. II-C and II-D.

A. Edge-Preserving PatchMatch

The main idea of original PatchMatch [7] is to initialize a
random correspondence field and then iteratively propagate
good guesses among neighboring pixels. In order to avoid
trapping into local minima, several random guesses are ad-
ditionally tried for each pixel during the propagation. The
matching cost between two patches is originally defined as
the patch Euclidean distance. Specifically, suppose two patches
with radius r are centered at location a(xa, ya) in image A
and location b(xb, yb) in image B, respectively. The matching
cost between the two patches is

d(a,b) =
∑

∆(∆x,∆y):
|∆x|6r,|∆y|6r

‖IA(a + ∆)− IB(b + ∆)‖2, (1)

where IA and IB denote the CIELab color appearances of
image A and B, respectively.

In order to make the NNF preserve details of input im-
age, we add bilateral weights [13] into the matching cost
calculation . Moreover, similar to the data term employed in
variational optical flow estimation [24], [25], we replace the
L2 norm in the above formulation with a robust loss function
(such as the negative Gauss function or the Lorentzian function
[24]) to reject outliers. Furthermore, in addition to color cue,
we can add more cues that can better deal with repetitive
patterns and textureless regions, e.g., image gradient or the
census transform [26]. Specifically, the matching cost in our
approach is defined as follows,

d(a,b) =
1

W

∑
∆(∆x,∆y):
|∆x|6r,|∆y|6r

w(a,b,∆)C(a,b,∆), (2)

where w(·) is the bilateral weighting function, W is the
normalization factor (sum of all the weight w(·)), and C(·)
is the robust cost between two pixels (suppose K cues are
involved in the cost calculation):

w(a,b,∆) = exp(−‖I
A(a + ∆)− IA(a)‖2

σ2
r

)

exp(−‖I
B(b + ∆)− IB(b)‖2

σ2
r

)

exp(−‖∆‖
2

σ2
s

), (3)

C(a,b,∆) =

K∑
i=1

ρi(C
A
i (a + ∆)− CB

i (b + ∆)), (4)

where σs and σr are controlling spatial and range influences,
respectively (typically, we set σs = 0.5r (r is patch radius) and
σr = 0.1. The cost contributed by each cue Ci is controlled by

(a) Input (first frame) (b) Original PatchMatch

(c) Ours (d) Ours (refined)

Fig. 1. PatchMatch results (cropped) on the “Army” dataset from Middlebury
benchmark [27]. The proposed edge-preserving PatchMatch can preserve
details in the NNF results. Note that the outliers in NNF result can be easily
removed by refinement.

a robust loss function ρi(·) for rejecting outliers and balancing
between different cues (for simplicity, we use the same loss
function for all the cues used in our experiments, see Sec. III).

Fig. 1 shows a comparison of the NNF results produced
by the original PatchMatch and the proposed edge-preserving
PatchMatch. The details in input image can be much better
preserved in NNF when using our edge-preserving version.
Note that in order to perform flow refinement (in particular,
the consistency check [11]), we need to compute the NNFs
between two images in both directions. Thus we use the
symmetric bilateral weight in Eq. (3), so that during the
PatchMatch we can symmetrically update both NNFs after
calculating one matching cost.

B. Approximate Algorithm

While PatchMatch can effectively reduce computational
complexity in terms of search range, its complexity still
depends on patch size. In order to produce high-quality flow
fields, however, a large patch size is usually preferred for elim-
inating matching ambiguities (note that the edge-preserving
feature plays an important role for maintaining flow accuracy
when increasing patch size). In this section, we propose an
algorithm that utilizes a self-similarity propagation scheme
and a hierarchical matching scheme to approximate the exact
edge-preserving PatchMatch.

1) Self-Similarity Propagation: We notice that, due to the
range kernel employed in the matching cost computation (Eq.
(3)), the major portion of the matching cost is contributed
by pixels that are similar to the center pixel. This suggests
a natural way to accelerate the matching cost computation
which is to simply ignore dissimilar pixels to center pixel. To
be more specific, for each pixel, we precompute the n (n �
M = (2r + 1)2) most similar pixels within its neighborhood,
store their positions and use them to compute the cost.



4

(a) Guidance image (b) Input image

(c) Brute-force JBF (d) n = 100 (38dB)

Fig. 2. Approximating joint bilateral filtering (JBF) using n most similar
pixels for each pixel (r = 17, patch size is 35×35, σs = 0.5×r, σr = 0.05).
Input images and parameters are reproduced from [28]. It is suggested that
PSNR value above 40dB often corresponds to almost invisible differences
between two images [30].

Average Error EPE AAE CPU Timing (sec)†

Patch (35 × 35) 0.31 3.35 97.8
n = 200 0.32 3.45 19.1
n = 100 0.33 3.50 10.2
n = 50 0.33 3.56 5.4
n = 30 0.49 5.08 3.5
n = 10 0.91 9.94 1.6

†The time is recorded for running bidirection PatchMatch algorithm (computing two
NNFs) on 640× 480 images. Accuracy is evaluated after refinement. Note that the
CostFilter [11] takes about 430 seconds on the same CPU to produce bidirectional
optical flow with search range 61× 61.

TABLE I
AVERAGE OPTICAL FLOW ACCURACY ON THE MIDDLEBURY TRAINING

DATASETS WHEN USING SELECTED PIXELS (THE n MOST SIMILAR PIXELS
FOR EACH PIXEL) TO COMPUTE MATCHING COST.

Before applying the idea to optical flow estimation, we first
performed experiments on joint bilateral filtering [28], [29] to
validate it, since the matching cost computation in Eq. (2) is
essentially performing a brute-force joint bilateral filtering on
cost cues (using input image as guidance). The experiment is
conducted as follows: we compute the output of each pixel
only by the n most similar pixels to it according to the
guidance image. It is shown in the experiment that n = 50 to
100 can commonly produce high-quality approximate results
for large patch size like 35 × 35, which is employed in our
optical flow algorithm. Fig. 2 shows one example of the
experimental results.

When it comes to optical flow estimation, we performed ex-
periments on the Middlebury training datasets [27] to validate
this idea. For each pixel, the neighboring n most similar pixels
are used for computing patch matching cost. Table I shows
the optical flow accuracy and the corresponding runtime on
Middlebury training datasets when n is with different value

Algorithm 1 Self-Similarity Propagation Algorithm
Input: image A, patch radius r, number of selected pixels n.
Output: a self-similarity vector S(x, y) for each pixel (x, y)
containing locations of n selected pixels.
/* Initialization */
for each pixel (x, y) in A do

(1) randomize a vector S(x, y) containing the locations of n
neighboring pixels within the patch centered at (x, y);
(2) sort pixels in S(x, y) according to their Euclidean similarity
in CIELab color space to center pixel (x, y).

end for
/* Propagation */
for each pixel (x, y) in A (scan from top-left to bottom-right) do

(1) merge vector S(x − 1, y) and S(x, y − 1) into S(x, y)
according to the pixels’ color similarity to pixel (x, y);
/* This is essentially a sorting over 3n pixels in the three vectors
and select the n best pixels according to their color distances to
pixel (x, y). However, when pixel color at (x−1, y) or (x, y−1)
is close to (x, y), the merge process can be done faster with a
process similar to a merge sorting since the three vectors can
be treated as sorted vectors. */
(2) for pixel in S(x, y) that falls outside the patch window,
randomize a new location within the patch and re-sort the vector.

end for
for each pixel (x, y) in A (scan from bottom-right to top-left) do

(1) merge vector S(x + 1, y) and S(x, y + 1) into S(x, y)
(similar to above);
(2) for pixel in S(x, y) that falls outside the patch window,
randomize a new location within the patch and re-sort the vector.

end for

(patch size is fixed to 35× 35). Surprisingly, the result gives
a very good support for applying this idea to optical flow
estimation – upon balancing between quality and efficiency,
n = 50 can be a very good choice for 35×35 patch, which is
much smaller than the number of pixels inside each patch. By
involving much less pixels when computing matching cost, the
runtime of PatchMatch algorithm can be substantially reduced,
while only sacrificing very little quality performance.

Then a problem raised is that the brute-force selection of
n most similar pixels for each center pixel (out of total M
pixels within a patch) actually can be too slow, especially
when patch size is large, which may cancel out a large portion
of the speed gain of using less pixels. For example, selecting
n = 50 out of 35× 35-sized patch for 640× 480 image takes
about 12 seconds in our experiments (on CPU). Note that
the straightforward implementation of the selection process
takes O(Mn) complexity for each pixel. With a complex
data structure (like a max-heap), the computation complexity
can only be reduced to O(M log n), which is still too high.
Fortunately, inspired by the spirit of PatchMatch itself, we
designed a self-similarity propagation algorithm to roughly
select similar pixels for each pixel in a much faster way.

Our self-similarity propagation algorithm utilizes the fact
that adjacent pixels tend to be similar to each other, just
like the PatchMatch itself. Specifically, the algorithm is as
follows: for each pixel, we randomly select n pixels from
its surrounding region and store them into a vector in the
order of their similarity to the center pixel (namely, self-
similarity vector); then we scan the image from top-left to
bottom-right, and, for each pixel, merge its adjacent pixels’



5

(a) Input

(b) Exact selected pixels

(c) Approximated

Fig. 3. Visual results of our approximated algorithm for selecting similar
pixels (n = 50). The approximate results appear to have less pixels because
of duplicated pixel selection.

vector into its own vector (according to the stored pixels’
similarity to current pixel); reversely scan and merge. Since
we do not intend to select exactly the n most similar pixels to
the center pixel for each patch, the algorithm does not need
to interleave additional random guesses during propagation
or iterate more. The pseudo-code is in Algorithm 1. The
approximate algorithm only needs O(n log n) computation for
each pixel (the sorting in initialization step and merging in
propagation step), which is independent of patch size. Thanks
to the propagation between adjacent pixels, the algorithm can
produce reasonably good approximate results in a much faster
speed (for 35× 35 patch size with n = 50, it takes about 1.8
seconds and is about 6x faster than the exact selection, the
speedup factor grows larger as the patch size becomes larger).
For the optical flow accuracy, we do not experience degraded
accuracy on the Middlebury training datasets than using the
exact selected n pixels as reported in Table I. Fig. 3 shows
an example of the visual results of the selected pixels by our
algorithm. More results are provided in Sec. III.

2) Hierarchical Matching: When input image is large,
performing PatchMatch on all pixels is a waste of computation.
We employ a hierarchical matching scheme to further acceler-
ate the algorithm. Specifically, given a pair of input frames, we
first downsample the images to a certain lower resolution (for a
balance between speed and accuracy, we typically downsample
input images twice with a factor 0.5 at each dimension), then
we perform the above algorithm to compute the NNF on
the downsampled images. After obtaining the NNF on lower
resolution, we perform joint bilateral upsampling [23] to get
a coarse NNF on higher resolution. Then we perform a 3× 3
local patch matching to refine the coarse NNF on the higher
resolution images. The pipeline is repeated until we finally get
the NNF on the original resolution.

The hierarchical scheme is somewhat similar to that was
used in SimpleFlow [12]. However, there are two key differ-
ences between our approach and theirs: first, since our edge-
preserving PatchMatch does not have restriction on search
range, we do not downsample the original frames to very low
resolutions and hence it is able to handle large displacements
of thin structures (if they still exist in the downsampled
resolution). This will also reduce large error accumulation
when propagating NNF estimate from much lower resolution
to higher resolution. Second, thanks to the edge-preserving
ability, the coarser NNF is usually accurate enough and we

only need to perform local search within a 3×3 neighborhood
when refining the NNF on higher resolution. This can largely
reduce the computation cost, thus our approach is much faster
than SimpleFlow (see Sec. III).

Notice that although the hierarchical matching scheme here
is similar to the traditional coarse-to-fine framework, the early-
cutting pyramid employed in our method is essential to make
our method effective for handling large displacement (see
Sec. III for the experimental validation for handling large
displacement motions).

C. Handling Occlusions and Outliers

After computing bidirectional NNFs (at each resolution)
between two images, we explicitly perform forward-backward
consistency check [11] between the two NNFs to detect
occluded regions. Inconsistent mapping pixel is then fixed by
nearby pixels according to their bilateral weights. Even so,
there will still be some incorrect mapping pixels that cannot be
detected by the consistency check, which we treat as outliers.
A weighted median filtering [31] is thus performed on the
flow fields to remove the outliers (filtering is performed on
all pixels). A second pass consistency check and fixing is
then performed to make sure the filtering does not introduce
inconsistency. Note that the consistency check and fixing is
usually very fast, the computational overhead in this step is
mainly the weighted median filtering performed on all pixels.

When occluded region is large, a dedicated hole-filling step
is needed in order to fill flow values into such region (e.g.,
in our implementation a simple scanline-based algorithm is
used). Notice that in practical applications, occluded region is
not necessarily to be filled with flow values. On the contrary,
it is actually a reliable way to detect occluded regions and
choose specific handling algorithm with respect to different
applications (e.g., the application in Sec. IV-A).

D. Subpixel Refinement

Suppose the discrete correspondence for each pixel a in
image A is NNA→B(a) = b, and the patch centered at
pixel a is denoted by Ωa. We then compute the matching
costs between patch Ωa and m different patches around patch
Ωb (see Fig. 4a), respectively, which is denoted as D =
{d1, d2, ..., dm}. Note that when computing the matching cost,
the fast algorithm in previous section still applies. Assume the
cost follows a paraboloid surface on the 2D image grid:

d = f(x, y) = θ · [x2, y2, xy, x, y, 1]T, (5)

where θ = [θ1, θ2, ..., θ6] are the unknowns. Substituting the
m (m > 6, typically 25 in our experiments) known points into
the equation, we can solve the linear system and figure out the
unknowns. Then the b∗(x∗, y∗) associated with the minimum
cost can be computed as follows (by taking derivatives and
setting them to zero),

x∗ =
2θ2θ4 − θ3θ5

θ2
3 − 4θ1θ2

, and y∗ =
2θ1θ5 − θ3θ4

θ2
3 − 4θ1θ2

, (6)

which is the location of a’s correspondence with subpixel
accuracy. Note that the linear system to be solved is very small,



6

(a) Paraboloid fitting (b) Improved

Fig. 4. Illustration of our subpixel refinement. In (a): the red circles stand for m (m = 25 in the figure) patch centers around the original target position.
An elliptic paraboloid is fitted using the m points with their patch matching costs and the resulting subpixel position (marked by green circle) is computed
as the bottom vertex of the paraboloid. In (b): the m patches from upsampled images are actually denser on the original resolution and the resulting subpixel
position is more accurate. Note that the improved result is computed with almost no additional cost (except for pixel value interpolation, which is negligible
compared to other computation).

(a) Discrete NNF (b) Ground truth

(c) Subpixel refined (d) Improved

Fig. 5. Example of subpixel refinement. Note that the improved result in (d)
is obtained in the same runtime as that in (c).

in practice if we multiply a transposed matrix on both sides,
the linear system will have a constant size of 6× 6, no matter
how many points are involved (the value of m).

To further increase the subpixel accuracy, we compute
matching cost for the m points on upsampled images instead
of the original images (we obtain upsampled image using
bicubic interpolation with an upsampling factor of 2 along
each dimension in all our experiments). This does not increase
the computational overhead since we only need to compute
matching cost for all pixels on the original resolution. The
main difference is that the m points around pixel b are now
already with subpixel offsets to b (see Fig. 4b). Fig. 5 shows
the improvement of this strategy.

Finally, an edge-preserving filtering with small parameters
(e.g., bilateral filtering [32], [33] with σs = 2, σr = 0.01 in
our experiments) is performed on the flow fields to smooth
out small outliers that might be introduced in this step.

Clean pass EPE all EPE s40+† Runtime Processor
(sec)‡

DeepFlow[4] 5.377 33.701 17 CPU
MDP-Flow2[6] 5.837 39.459 547 CPU

Ours 6.494 39.152 0.25 GTX 780
S2D-Match[34] 6.510 44.187 1920 CPU
Classic+nlp[25] 6.731 45.290 888 CPU
FC-2Layers[35] 6.781 45.962 4525 CPU
LDOF[5], [36] 7.563 51.696 2.7 GTX 580
Classic+nl[25] 7.961 57.374 888 CPU
Classic++[25] 8.721 60.645 510 CPU

Horn-schunck[1] 8.739 58.243 156 CPU
Cls+nl-fast[25] 9.129 66.935 174 CPU
SimpleFlow[12] 12.617 81.786 2.9 GTX 285
A.Huber-L1[37] 12.642 77.835 3.2 GTX 280

Final pass EPE all EPE s40+† Runtime Processor
(sec)‡

DeepFlow[4] 7.212 44.118 17 CPU
S2D-Match[34] 7.872 48.782 1920 CPU
FC-2Layers[35] 8.137 51.349 4525 CPU
Classic+nlp[25] 8.291 51.162 888 CPU

Ours 8.377 49.083 0.25 GTX 780
MDP-Flow2[6] 8.445 50.507 547 CPU

LDOF[5] 9.116 57.296 2.7 GTX 580
Classic+nl[25] 9.153 60.291 888 CPU

Horn-schunck[1] 9.610 58.274 156 CPU
Classic++[25] 9.959 64.135 510 CPU
Cls+nl-fast[25] 10.088 67.801 174 CPU
A.Huber-L1[37] 11.927 74.796 3.2 GTX 280
SimpleFlow[12] 13.364 81.350 2.9 GTX 285
†: The column “EPE s40+” means the average endpoint error over regions with

flow velocities larger than 40 pixels per frame.
‡: The runtime are reproduced from either the original papers or the other

benchmark websites for 1024× 436 sized images. Note that due to large
memory consumption, DeepFlow [4] is difficult to be implemented on GPU.

TABLE II
PERFORMANCE ON MPI SINTEL BENCHMARK

(SINTEL.IS.TUE.MPG.DE/RESULTS, CAPTURED ON MAY 15, 2014). ONLY
PUBLISHED PUBLICATIONS ARE SHOWN.

III. EXPERIMENTAL RESULTS

In this section, we present our experimental results on three
public optical flow benchmarks – the Middlebury benchmark
[27], the KITTI benchmark [38], and the MPI Sintel bench-
mark [39]. Note that the Middlebury benchmark only contains

sintel.is.tue.mpg.de/results


7

(a) Input (first frame) (b) Input (second frame) (c) Ground truth (d) Our result

Fig. 6. Example results on MPI Sintel training data. The scenes are pretty challenging because of large motions and motion blur. Notice that most of the
motion boundaries are well preserved in our results.

(a) “ambush 1” clean pass (b) “ambush 1” final pass

(c) “ambush 3” clean pass (d) “ambush 3” final pass

Fig. 7. Visual comparison of our results on the two passes of MPI Sintel
benchmark. The heterogeneous smoke in (b), as well as the “textured” fog
(see Fig. 8), seriously disturbs image local variances and cause the results of
our local method degraded much, especially at textureless regions (see the
regions marked by red squares).

small displacement motions and the KITTI benchmark is
specially targeted on autonomous driving, thus our main focus
is on the MPI Sintel benchmark. In our implementation, we
use the AD-Census [40] for computing matching cost (i.e.,
the CIELab color cue together with the census transform
cue). Parameters for the edge-preserving PatchMatch are set
to r = 17, σs = 0.2r and σr = 0.1. We implemented the
whole pipeline of our algorithm using CUDA and performed
all the experiments on a NVIDIA Geforce GTX 780 GPU. In
the self-similarity propagation step, We employed the Jump
Flooding algorithm [41] for fast parallel propagation on GPU
(the same as PatchMatch [7]).

A. Results on MPI Sintel Benchmark

The MPI Sintel benchmark is a challenging optical flow
evaluation benchmark, especially due to the complex elements

Fig. 8. Close-ups (marked by red squares in Fig. 7) for the detail enhanced
version of the input images in Fig. 7. The subtle textures introduced by
synthetic atmospheric effects can be easily observed.

involved, e.g., large motions, specular reflections, motion
blur, defocus blur, and atmospheric effects. The evaluation is
performed on two kinds of rendering frames, namely clean
pass and final pass, each containing 12 sequences with over
500 frames in total. Table II shows the performance of our
method on this benchmark (complete table is available online).
Our method are among the top performers but with much
faster speed than the competitors. Note that if we only consider
regions containing large motions (see column “EPE s40+” in
Table II), our method ranks even higher. Fig. 6 shows two
examples of our results on the training data.

One observation is that our method performs worse on the
final pass than on the clean pass. Note that the final pass
is rendered with motion blur, defocus blur and atmospheric
effects while the clean pass are not. By comparing between
the results on the two passes (see Fig. 7), we find that our
results are mainly degraded on 3 (out of 12) sequences,
namely “ambush 1”, “ambush 3”, and “mountain 2,” when
moving from clean pass to final pass. In fact, it turns out
motion blur and defocus blur do not affect the quality of the
results too much, since adjacent frames are usually blurred
similarly. This is also usually true for real-world videos,
except when the observed object dramatically changes speed
or the camera changes focus. The real reason why the results
are degraded on the 3 sequences is actually because of the
synthetic atmospheric effects, in particular, the heterogeneous
smoke (Fig. 7b) and heavy fog (Figs. 7d). These two kinds of
effects seriously disturb image local variances (while this is
obvious for smoke, the synthetic fog actually introduces very
subtle textures, which can be observed on the detail enhanced
input images shown in Fig. 8), and this will cause problems
at textureless regions for local method since matching cues



8

Method† Out-Noc Avg-Noc Runtime Processor
(sec)‡

TGV2adcsift[42] 4.71% 1.6px 12 GTX 460
DeepFlow[4] 5.38% 1.5px 17 CPU
CRTflow[43] 6.90% 2.7px 18 GTX 460
Classic++[44] 8.04% 2.6px 510 CPU

fSGM[45] 8.44% 3.2px 60 CPU
Ours 8.62% 2.5px 0.25 GTX 780

TGV2census[46] 9.19% 2.9px 4 GTX 460
Cls+nl-fast[44] 10.13% 3.2px 174 CPU
Ours (w/o PF) 12.28% 3.4px 0.23 GTX 780

Horn-schunck[1] 12.47% 4.0px 156 CPU
LDOF[5] 18.72% 5.5px 2.4 GTX 580

TV-L1[47] 26.50% 7.8px 16 CPU
BERLOF[48] 30.63% 8.5px 0.231 GTX 680

RLOF[49] 31.49% 8.7px 0.488 GTX 680
HAOF[50] 32.48% 11.1px 16.2 CPU

PolyExpand[51] 44.53% 17.2px 1 CPU
Pyramid-LK[2] 57.22% 21.7px 90 CPU

†: Only pure optical flow algorithms are shown. Methods incorporated with stereo
matching or epipolar geometry are not shown.
‡: The runtime are reproduced from either the original papers or the other

benchmark websites for 1242× 375 sized images.

TABLE III
PERFORMANCE ON KITTI BENCHMARK

(WWW.CVLIBS.NET/DATASETS/KITTI, CAPTURED ON MAY 15, 2014)
WHEN ERROR THRESHOLD IS 5 PIXEL. “OURS (W/O PF)” IS OUR METHOD

WITHOUT PLANE FITTING SCHEME.

might be locally dominated by the subtle textures introduced.
See Sec. III-D for more discussion.

B. Results on KITTI Benchmark

The KITTI optical flow benchmark contains 194 pairs of
grayscale frames (test dataset), which are obtained with a
wide-view camera fixed on a moving vehicle. Thus most of the
scenes in the dataset are perspective views of streets and the
scene motions are caused by camera movements along streets.
In this case, the frontal-parallel assumption of PatchMatch
often fails due to the slanted planes (e.g., the road ahead
of camera) in the scenes. Our method without plane fitting
scheme performs not well on this benchmark (see “Ours (w/o
PF)” in Table III).

In order to adjust our method to better handle such kind
of scenes, we introduce the randomized plane fitting scheme
into our method [18]. The idea is that, during the patch
matching, the shape of the patch is adjusted to fit the optimal
plane orientation. Since the optimal plane is unknown, it is
parameterized with three unknown parameters for each pixel,
which is initialized with random guess and propagated during
PatchMatch (just like the unknown flow itself) [18]. The
improvement of this scheme is particularly effective for KITTI
benchmark (see the entry “Ours” in Table III). Fig. 10 shows
a visual example of the improvement.

Notice that since most of the flow in KITTI benchmark are
caused by camera movement and tend to be smooth with few
motion boundaries, traditional coarse-to-fine methods (e.g.,
“Classic++” [44]) actually perform better than some other
more advanced methods (including ours). However, if one is
willing to compromise a little on quality for the sake of speed,
our method can provide a good choice in this case.

Method Avg. Avg. Runtime Processor
Rank EPE (sec)†

Ours (w/o HM) 31.1 0.33 2.5 GTX 780
SimpleFlow[12] 35.5 0.47 1.7+240‡ GTX 280

Adaptive[52] 38.9 0.40 9.2 Tesla C1060
CompOF-FED[53] 43.0 0.47 0.97 GTX 285

A.Huber-L1[37] 44.2 0.40 2 GTX 285
TV-L1-Imp[47] 49.1 0.54 2.9 GTX 285

WTV-L1-SB[54] 51.0 0.48 0.38 GTX 780
Ours 64.0 0.62 0.20 GTX 780

†: The runtime are reproduced from the benchmark website (only algorithms
reported on GPU are shown). Note that considering the hardware generations,
CompOF-FED [53] actually should be faster than our method. But only our
algorithm in this table can handle large displacement motions.

‡: The reported results of SimpleFlow are obtained after global optimization using
[25], which takes about 240 seconds using the Matlab code provided by [25].

TABLE IV
PERFORMANCE ON MIDDLEBURY BENCHMARK

(VISION.MIDDLEBURY.EDU/FLOW, ENDPOINT ERROR, CAPTURED ON MAY
15, 2014). “OURS (W/O HM)” IS OUR METHOD WITHOUT HIERARCHICAL

MATCHING SCHEME.

(a) Input (first frame) (b) Ground truth

(c) with HM (0.82) (d) without HM (0.63)

Fig. 9. An example of our results on Middlebury benchmark. The EPE is
shown in the caption.

C. Results on Middlebury Benchmark

The evaluation on Middlebury Benchmark is performed
on 12 pairs of frames, most of which contain only small
displacement motions. Since a matching process is not nec-
essarily needed in the context of small displacements, our
method is actually not suitable for this benchmark. Table IV
shows the performance of our method on the Middlebury
benchmark (complete table is available online). Note that since
the evaluation dataset is very small, methods submitted to the
benchmark tend to be overfitted (a small difference in EPE can
lead to a huge difference in ranking). Our algorithm without
the hierarchical matching scheme gets a large promotion on
the ranking list (see “Ours (w/o HM)” in Table IV, notice that
hierarchical matching scheme is for fast approximation).

www.cvlibs.net/datasets/kitti
vision.middlebury.edu/flow


9

(a) Frame 1 (b) Frame 2

(c) Without plane fitting (4.27%) (d) With plane fitting (3.67%)

Fig. 10. The improvement by introducing plane fitting scheme. The color coding of flow is from KITTI benchmark. The number in the captions means
percentage of bad pixels (flow error larger than 5 pixels). Notice the improvement in the region marked by the white squares.

(a) Input (∆t = 0.0) (b) Result (∆t = 0.2) (c) Result (∆t = 0.4) (d) Result (∆t = 0.6) (e) Result (∆t = 0.8) (f) Input (∆t = 1.0)

Fig. 11. Two snapshots of our result on video slow motion synthesis. Please refer to the supplementary materials for video examples.

D. Limitations

As a local method, our approach fails at large textureless
regions, where local evidences are not enough to eliminate
matching ambiguities. While increasing patch size or adding
more cues (such as the census transform) might help relieve the
problem, it cannot be completely avoided, especially when the
regions are large. In addition, textureless regions can be easily
affected by small noise or disturbance (such as the synthetic
“textured” fog in Fig. 8), which may lead to incorrect match.
In this case, global optimization techniques may be needed.
However, notice that mismatch in textureless regions might
not be a serious problem for some real-world applications.

IV. DEMO APPLICATIONS

We in this section show some results of applying our optical
flow algorithm into real-world video editing applications.
Notice that in these applications, a fast optical flow algorithm
is the key to provide a user-friendly editing experience.

A. Video Slow Motion Synthesis

Slow motion synthesis is to construct artificial frames be-
tween existing video frames to make the video slow down
to a certain speed. For example, if the video is going to be
slow down to 10% speed, the number of total video frames

(a) Input (b) Our result

Fig. 12. A snapshot of our results on flow-based video denoising. The original
video and denoised video can be found in the supplementary materials.

should be 10x more and thus there should be 9 frames to
be constructed between each two existing frames. The natural
way to construct an artificial frame is to fetch pixels from the
two existing frames between which the frame is to be placed.
We compute the bidirectional (forward and backward) optical
flow between the two existing frames, and then perform a
forward warping on the flow fields to get two intermediate
flow fields for a given time position between the two frames,



10

(a) First frame (user input) (b) Second frame (our result)

Fig. 13. A snapshot of our results on video selection propagation. The red
line in the first frame is selected by user and that in the second frame is
automatically produced using optical flow.

and then construct two intermediate artificial frames from the
two existing frames, respectively. Finally we use the given
time position to blend the two intermediate artificial frame to
get a result frame, which is more similar to the frame to which
the time position is closer. The optical flow computation is the
most time-consuming part of this pipeline (the runtime of the
other part can be ignored comparing to the runtime of optical
flow algorithm). With our optical flow algorithm, we are able
to achieve 40 fps (based on the number of output frames) for
640x480 videos when the target motion speed is 10%. Fig. 11
shows one example of our results. More video results can be
found in the supplementary materials.

B. Flow-based Video Denoising

Optical flow can be used to establish temporal correspon-
dences across video frames for high-quality video denoising
[55]. For each patch in a certain frame, we first compute a few
similar patches around it and then use the optical flow fields to
collect more similar patches in nearby frames (according to the
original patch and its similar neighbors). Finally, an algorithm
similar to non-local means is applied to denoise the original
patch using all the collected patches. The pipeline is pretty
robust for producing temporal coherent video results. The main
computation is again the optical flow estimation step. With our
optical flow algorithm, the whole pipeline could be accelerated
much. Fig. 12 shows an example of our results. More video
results can be found in the supplementary materials.

C. Video Editing Propagation

A common way to reduce user efforts in video editing is
to propagate user editing results (such as object selection, re-
colorization, and tone adjustment) from one frame to another
according to optical flow field. Fig. 13 shows an example of
propagating user selected object boundary with our flow result.

V. CONCLUSIONS

In this paper, we present an optical flow estimation approach
that can efficiently produce high-quality results, even when
the scene contains very large motions. Our method is local,
yet independent of search range, and therefore is fast, thanks
to the randomized propagation of self-similarity patterns and
correspondence offsets, as well as the hierarchical matching
scheme. Evaluations on public benchmarks demonstrate the
effectiveness and efficiency of our algorithm. We believe our

fast yet effective method will find its place in many practical
applications.

REFERENCES

[1] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelli-
gence, vol. 17, pp. 185–203, 1981.

[2] B. D. Lucas, T. Kanade et al., “An iterative image registration technique
with an application to stereo vision,” in Proc. IJCAI. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679.

[3] F. Steinbruecker, T. Pock, and D. Cremers, “Large displacement optical
flow computation without warping,” in Proc. ICCV. IEEE, 2009, pp.
1609–1614.

[4] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deepflow:
Large displacement optical flow with deep matching,” in Proc. ICCV.
IEEE, 2013, pp. 1385–1392.

[5] T. Brox and J. Malik, “Large displacement optical flow: descriptor
matching in variational motion estimation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 3, pp. 500–513, March 2011.

[6] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow
estimation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp.
1744–1757, Sept 2012.

[7] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, “Patchmatch:
a randomized correspondence algorithm for structural image editing,”
ACM Trans. Graph. (Proc. SIGGRAPH), vol. 28, no. 3, pp. 24:1–24:11,
Jul. 2009.

[8] S. Korman and S. Avidan, “Coherency sensitive hashing,” in Proc. ICCV.
IEEE, 2011, pp. 1607–1614.

[9] K. He and J. Sun, “Computing nearest-neighbor fields via propagation-
assisted kd-trees,” in Proc. CVPR. IEEE, 2012, pp. 111–118.

[10] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu, “Large displacement
optical flow from nearest neighbor fields,” in Proc. CVPR. IEEE, 2013.

[11] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” in Proc.
CVPR. IEEE, 2011, pp. 3017–3024.

[12] M. Tao, J. Bai, P. Kohli, and S. Paris, “Simpleflow: A non-iterative,
sublinear optical flow algorithm,” Comp. Graph. Forum, vol. 31, no.
2pt1, pp. 345–353, May 2012.

[13] K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for
correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,
no. 4, pp. 650–656, April 2006.

[14] L. Bao, Q. Yang, and H. Jin, “Fast edge-preserving patchmatch for large
displacement optical flow,” in Proc. CVPR. IEEE, June 2014.

[15] P. Anandan, “A computational framework and an algorithm for the
measurement of visual motion,” Int. J. Comput. Vision, vol. 2, no. 3,
pp. 283–310, 1989.

[16] W. Enkelmann, “Investigations of multigrid algorithms for the estimation
of optical flow fields in image sequences,” in Comput. Vision Graph.
Image Process., vol. 43, no. 2. San Diego, CA, USA: Academic Press
Professional, Inc., Aug. 1988, pp. 150–177.

[17] L. Alvarez, J. Weickert, and J. Sánchez, “Reliable estimation of dense
optical flow fields with large displacements,” Int. J. Comput. Vision,
vol. 39, no. 1, pp. 41–56, 2000.

[18] M. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo-stereo
matching with slanted support windows.” in Proc. BMVC, 2011.

[19] J. Lu, H. Yang, D. Min, and M. N. Do, “Patch match filter: Efficient
edge-aware filtering meets randomized search for fast correspondence
field estimation,” in Proc. CVPR. IEEE, June 2013, pp. 2443–2450.

[20] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vision,
vol. 47, no. 1-3, pp. 7–42, 2002.

[21] Q. Yang, N. Ahuja, R. Yang, K.-H. Tan, J. Davis, B. Culbertson,
J. Apostolopoulos, and G. Wang, “Fusion of median and bilateral
filtering for range image upsampling,” IEEE Trans. Image Process.,
vol. 22, no. 12, pp. 4841–4852, Dec 2013.

[22] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu, “Constant time weighted
median filtering for stereo matching and beyond,” in Proc. ICCV. IEEE,
2013, pp. 49–56.

[23] Q. Yang, R. Yang, J. Davis, and D. Nistér, “Spatial-depth super resolu-
tion for range images,” in Proc. CVPR. IEEE, June 2007, pp. 1–8.

[24] M. J. Black and P. Anandan, “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields,” Comput. Vis. Image
Underst., vol. 63, no. 1, pp. 75–104, Jan. 1996.

[25] D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current
practices in optical flow estimation and the principles behind them,” Int.
J. Comput. Vision, vol. 106, no. 2, pp. 115–137, Jan. 2014.



11

[26] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in Proc. ECCV. Berlin, Heidelberg:
Springer-Verlag, 1994, pp. 151–158.

[27] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” Int. J.
Comput. Vision, vol. 92, no. 1, pp. 1–31, 2011.

[28] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image pairs,”
vol. 23, no. 3. New York, NY, USA: ACM, Aug. 2004, pp. 664–672.

[29] K. Zhang, G. Lafruit, R. Lauwereins, and L. Van Gool, “Constant time
joint bilateral filtering using joint integral histograms,” IEEE Trans.
Image Process., vol. 21, no. 9, pp. 4309–4314, Sept 2012.

[30] S. Paris and F. Durand, “A fast approximation of the bilateral filter using
a signal processing approach,” Int. J. Comput. Vision, vol. 81, no. 1, pp.
24–52, Jan. 2009.

[31] L. Bao, Y. Song, Q. Yang, and N. Ahuja, “An edge-preserving filtering
framework for visibility restoration,” in Proc. ICPR. IEEE, Nov 2012,
pp. 384–387.

[32] B. Gunturk, “Fast bilateral filter with arbitrary range and domain
kernels,” IEEE Trans. Image Process., vol. 20, no. 9, pp. 2690–2696,
Sept 2011.

[33] Q. Yang, “Hardware-efficient bilateral filtering for stereo matching,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 5, pp. 1026–1032,
May 2014.

[34] M. Leordeanu, A. Zanfir, and C. Sminchisescu, “Locally affine sparse-
to-dense matching for motion and occlusion estimation,” in Proc. ICCV.
IEEE, 2013, pp. 1721–1728.

[35] D. Sun, J. Wulff, E. B. Sudderth, H. Pfister, and M. J. Black, “A fully
connected layered model of foreground and background flow,” in Proc.
CVPR. IEEE, 2013, pp. 2451–2458.

[36] N. Sundaram, T. Brox, and K. Keutzer, “Dense point trajectories by gpu-
accelerated large displacement optical flow,” in Proc. ECCV. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 438–451.

[37] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof, “Anisotropic huber-l1 optical flow,” in Proc. BMVC, 2009.

[38] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proc. CVPR. IEEE, June
2012, pp. 3354–3361.

[39] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in Proc. ECCV. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 611–625.

[40] X. Mei, X. Sun, M. Zhou, H. Wang, X. Zhang et al., “On building an
accurate stereo matching system on graphics hardware,” in Proc. ICCV
Workshop. IEEE, Nov 2011, pp. 467–474.

[41] G. Rong and T.-S. Tan, “Jump flooding in gpu with applications to
voronoi diagram and distance transform,” in Proc. I3D. New York,
NY, USA: ACM, 2006, pp. 109–116.

[42] J. Braux-Zin, R. Dupont, and A. Bartoli, “A general dense image
matching framework combining direct and feature-based costs,” in Proc.
ICCV. IEEE, 2013, pp. 185–192.

[43] O. Demetz, D. Hafner, and J. Weickert, “The complete rank transform:
A tool for accurate and morphologically invariant matching of structure,”
in Proc. BMVC, 2013.

[44] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation
and their principles,” in Proc. CVPR. IEEE, June 2010, pp. 2432–2439.

[45] S. Hermann and R. Klette, “Hierarchical scan line dynamic programming
for optical flow using semi-global matching,” in Proc. ACCV. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 556–567.

[46] R. Ranftl, S. Gehrig, T. Pock, and H. Bischof, “Pushing the limits of
stereo using variational stereo estimation,” in Proc. Intelligent Vehicles
Symposium (IV). IEEE, June 2012, pp. 401–407.

[47] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers, “An improved
algorithm for TV-L1 optical flow,” in Statistical and Geometrical Ap-
proaches to Visual Motion Analysis, ser. Lecture Notes in Computer
Science, vol. 5604. Springer Berlin Heidelberg, 2009, pp. 23–45.

[48] T. Senst, J. Geistert, I. Keller, and T. Sikora, “Robust local optical flow
estimation using bilinear equations for sparse motion estimation,” in
Proc. ICIP. IEEE, Sept 2013, pp. 2499–2503.

[49] T. Senst, V. Eiselein, and T. Sikora, “Robust local optical flow for feature
tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 9, pp.
1377–1387, Sept 2012.

[50] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Proc. ECCV.
Berlin, Heidelberg: Springer-Verlag, 2004, pp. 25–36.

[51] G. Farnebäck, “Two-frame motion estimation based on polynomial ex-
pansion,” in Proc. Scandinavian Conference on Image Analysis (SCIA).
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 363–370.

[52] A. Wedel, D. Cremers, T. Pock, and H. Bischof, “Structure- and motion-
adaptive regularization for high accuracy optic flow,” in Proc. ICCV.
IEEE, Sept 2009, pp. 1663–1668.

[53] P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert, “A
highly efficient gpu implementation for variational optic flow based on
the euler-lagrange framework,” in Trends and Topics in Computer Vision,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, vol. 6554, pp. 372–383.

[54] L. Bao, H. Jin, B. Kim, and Q. Yang, “A comparison of tv-l1 optical flow
solvers on gpu,” in Proc. GPU Technology Conference (GTC) Posters.
NVIDIA, 2014, p. P4254.

[55] C. Liu and W. T. Freeman, “A high-quality video denoising algorithm
based on reliable motion estimation,” in Proc. ECCV. Berlin, Heidel-
berg: Springer-Verlag, 2010, pp. 706–719.

Linchao Bao (S’-14) is currently a Ph.D. student
in the Department of Computer Science at City
University of Hong Kong. He obtained a M.S. degree
in Pattern Recognition and Intelligent Systems from
Huazhong University of Science and Technology,
Wuhan, China in 2011. His research interests reside
in computer vision and graphics.

Qingxiong Yang (M’-11) received the BE degree in
Electronic Engineering & Information Science from
University of Science & Technology of China in
2004 and the PhD degree in Electrical & Computer
Engineering from University of Illinois at Urbana-
Champaign in 2010. He is an assistant Professor in
the Computer Science Department at City University
of Hong Kong. His research interests reside in com-
puter vision and computer graphics. He is a recipient
of the best student paper award at MMSP 2010 and
the best demo award at CVPR 2007.

Hailin Jin (M’-04) received his Bachelor’s degree
in Automation from Tsinghua University, Beijing,
China in 1998. He then received his Master of
Science and Doctor of Science degrees in Electrical
Engineering from Washington University in Saint
Louis in 2000 and 2003 respectively. Between fall
2003 and fall 2004, he was a postdoctoral researcher
at the Computer Science Department, University of
California at Los Angeles. Since October 2004, he
has been with Adobe Systems Incorporated where
he is currently a Principal Scientist. He received

the best student paper award (with J. Andrews and C. Sequin) at the 2012
International CAD conference for work on interactive inverse 3D modeling.
He is a member of the IEEE and the IEEE Computer Society.


	Introduction
	Related work
	Contributions

	Our Approach
	Edge-Preserving PatchMatch
	Approximate Algorithm
	Self-Similarity Propagation
	Hierarchical Matching

	Handling Occlusions and Outliers
	Subpixel Refinement

	Experimental Results
	Results on MPI Sintel Benchmark
	Results on KITTI Benchmark
	Results on Middlebury Benchmark
	Limitations

	Demo Applications
	Video Slow Motion Synthesis
	Flow-based Video Denoising
	Video Editing Propagation

	Conclusions
	References
	Biographies
	Linchao Bao
	Qingxiong Yang
	Hailin Jin


