Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow Supplementary Material

Linchao Bao Qingxiong Yang Hailin Jin City University of Hong Kong Adobe Systems, Inc.

This document contains supplementary material for the paper "Fast Edge-Preserving Patch-Match for Large Displacement Optical Flow" to be appeared in CVPR 2014. The list of items included here are:

- 1. Screenshot of MPI Sintel benchmark.
- 2. Screenshot of KITTI benchmark.
- 3. Screenshot of Middlebury benchmark.
- 4. More results on MPI Sintel benchmark.
- 5. More results on KITTI benchmark.

Besides, a **binary executable demo** for Windows operating systems is provided together with this document (in order to run the program, you should have a CUDA-enabled NVIDIA GPU).

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+	
GroundTruth [1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Visualize Results
DeepFlow [2]	5.377	1.771	34.751	4.519	1.534	0.837	0.960	2.730	33.701	Visualize Results
IVANN [3]	5.386	1.397	37.896	2.722	1.341	1.004	0.683	2.245	36.342	Visualize Results
MDP-Flow2 [4]	5.837	1.869	38.158	3.210	1.913	1.441	0.640	2.603	39.459	Visualize Results
EPPM ^[5]	6.494	2.675	37.632	4.997	2.422	1.948	1.402	3.446	39.152	Visualize Results
S2D-Matching [6]	6.510	2.792	36.785	5.523	3.018	1.546	0.622	3.012	44.187	Visualize Results
Classic+NLP [7]	6.731	2.949	37.545	5.573	3.291	1.648	0.638	3.296	45.290	Visualize Results
FC-2Layers-FF [8]	6.781	3.053	37.144	5.841	3.390	1.688	0.580	3.308	45.962	Visualize Results
LDOF [9]	7.563	3.432	41.170	5.353	3.284	2.454	0.936	2.908	51.696	Visualize Results
Classic+NL [10]	7.961	3.770	42.079	6.191	3.911	2.509	0.573	2.694	57.374	Visualize Results
Classic++ [11]	8.721	4.259	45.047	6.983	4.494	2.753	0.902	3.295	60.645	Visualize Results
Horn+Schunck [12]	8.739	4.525	43.032	7.542	5.045	2.891	1.141	3.860	58.243	Visualize Results
Classic+NL-fast [13]	9.129	4.725	44.956	7.157	4.974	3.331	0.558	2.812	66.935	Visualize Results
SimpleFlow [14]	12.617	7.848	51.435	10.693	8.422	6.170	0.711	8.411	81.786	Visualize Results
AnisoHuber.L1 [15]	12.642	7.983	50.472	10.457	8.675	6.320	0.753	9.976	77.835	Visualize Results
AtrousFlow [18]	14.200	9.584	51.758	11.964	10.338	7.926	1.702	12.440	80.185	Visualize Results

Final Clean

										•
	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+	
GroundTruth [1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Visualize Results
DeepFlow [2]	5.377	1.771	34.751	4.519	1.534	0.837	0.960	2.730	33.701	Visualize Results
IVANN [3]	5.386	1.397	37.896	2.722	1.341	1.004	0.683	2.245	36.342	Visualize Results
EPPM [4]	6.494	2.675	37.632	4.997	2.422	1.948	1.402	3.446	39.152	Visualize Results
MDP-Flow2 [5]	5.837	1.869	38.158	3.210	1.913	1.441	0.640	2.603	39.459	Visualize Results
S2D-Matching [6]	6.510	2.792	36.785	5.523	3.018	1.546	0.622	3.012	44.187	Visualize Results
Classic+NLP [7]	6.731	2.949	37.545	5.573	3.291	1.648	0.638	3.296	45.290	Visualize Results
FC-2Layers-FF [8]	6.781	3.053	37.144	5.841	3.390	1.688	0.580	3.308	45.962	Visualize Results
LDOF [9]	7.563	3.432	41.170	5.353	3.284	2.454	0.936	2.908	51.696	Visualize Results
Classic+NL [10]	7.961	3.770	42.079	6.191	3.911	2.509	0.573	2.694	57.374	Visualize Results
Horn+Schunck [11]	8.739	4.525	43.032	7.542	5.045	2.891	1.141	3.860	58.243	Visualize Results
Classic++ [12]	8.721	4.259	45.047	6.983	4.494	2.753	0.902	3.295	60.645	Visualize Results
Classic+NL-fast [13]	9.129	4.725	44.956	7.157	4.974	3.331	0.558	2.812	66.935	Visualize Results
AnisoHuber.L1 [14]	12.642	7.983	50.472	10.457	8.675	6.320	0.753	9.976	77.835	Visualize Results
AtrousFlow [15]	14.200	9.584	51.758	11.964	10.338	7.926	1.702	12.440	80.185	Visualize Results
SimpleFlow [16]	12.617	7.848	51.435	10.693	8.422	6.170	0.711	8.411	81.786	Visualize Results

Figure 1: Average endpoint error (EPE) ranking on MPI Sintel benchmark – clean pass (captured on $Oct\ 30th,\ 2013$). The second figure is the ranking by only considering large displacement motions (flow velocity larger than 40 pixels per frame)

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+	
GroundTruth [1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Visualize Results
DeepFlow [2]	7.212	3.336	38.781	5.650	3.144	2.208	1.284	4.107	44.118	Visualize Results
IVANN [3]	7.249	2.973	42.088	4.896	2.817	2.218	1.159	4.183	44.866	Visualize Results
S2D-Matching [4]	7.872	3.918	40.093	5.975	3.815	2.851	1.172	4.695	48.782	Visualize Results
FC-2Layers-FF [5]	8.137	4.261	39.723	6.537	4.257	2.946	1.034	4.835	51.349	Visualize Results
Classic+NLP [6]	8.291	4.287	40.925	6.520	4.265	2.984	1.208	5.090	51.162	Visualize Results
EPPM ^[7]	8.377	4.286	41.695	6.556	4.024	3.323	1.834	4.955	49.083	Visualize Results
MDP-Flow2 [8]	8.445	4.150	43.430	5.703	3.925	3.406	1.420	5.449	50.507	Visualize Results
FDOŁ [a]	9.116	5.037	42.344	6.849	4.928	4.003	1.485	4.839	57.296	Visualize Results
Classic+NL [10]	9.153	4.814	44.509	7.215	4.822	3.427	1.113	4.496	60.291	Visualize Results
Horn+Schunck [11]	9.610	5.419	43.734	7.950	5.658	3.976	1.882	5.335	58.274	Visualize Results
Classic++ [12]	9.959	5.410	47.000	8.072	5.554	3.750	1.403	5.098	64.135	Visualize Results
Classic+NL-fast [13]	10.088	5.659	46.145	8.010	5.738	4.160	1.092	4.666	67.801	Visualize Results
AnisoHuber.L1 [14]	11.927	7.323	49.366	9.464	7.692	5.929	1.155	7.966	74.796	Visualize Results
SimpleFlow [15]	13.364	8.620	51.949	10.872	8.884	7.171	1.475	9.582	81.350	Visualize Results
AtrousFlow [18]	14.173	9.573	51.548	11.511	10.027	8.092	2.011	12.052	79.484	Visualize Results

Final	Clean
-------	-------

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+	
GroundTruth [1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Visualize Results
DeepFlow [2]	7.212	3.336	38.781	5.650	3.144	2.208	1.284	4.107	44.118	Visualize Results
IVANN [3]	7.249	2.973	42.088	4.896	2.817	2.218	1.159	4.183	44.866	Visualize Results
S2D-Matching [4]	7.872	3.918	40.093	5.975	3.815	2.851	1.172	4.695	48.782	Visualize Results
EPPM [5]	8.377	4.286	41.695	6.556	4.024	3.323	1.834	4.955	49.083	Visualize Results
MDP-Flow2 [6]	8.445	4.150	43.430	5.703	3.925	3.406	1.420	5.449	50.507	Visualize Results
Classic+NLP [7]	8.291	4.287	40.925	6.520	4.265	2.984	1.208	5.090	51.162	Visualize Results
FC-2Layers-FF [8]	8.137	4.261	39.723	6.537	4.257	2.946	1.034	4.835	51.349	Visualize Results
LDOF [9]	9.116	5.037	42.344	6.849	4.928	4.003	1.485	4.839	57.296	Visualize Results
Horn+Schunck [10]	9.610	5.419	43.734	7.950	5.658	3.976	1.882	5.335	58.274	Visualize Results
Classic+NL [11]	9.153	4.814	44.509	7.215	4.822	3.427	1.113	4.496	60.291	Visualize Results
Classic++ [12]	9.959	5.410	47.000	8.072	5.554	3.750	1.403	5.098	64.135	Visualize Results
Classic+NL-fast [13]	10.088	5.659	46.145	8.010	5.738	4.160	1.092	4.666	67.801	Visualize Results
AnisoHuber.L1 [14]	11.927	7.323	49.366	9.464	7.692	5.929	1.155	7.966	74.796	Visualize Results
AtrousFlow [15]	14.173	9.573	51.548	11.511	10.027	8.092	2.011	12.052	79.484	Visualize Results
SimpleFlow [18]	13.364	8.620	51.949	10.872	8.884	7.171	1.475	9.582	81.350	Visualize Results

Figure 2: Average endpoint error (EPE) ranking on MPI Sintel benchmark – final pass (captured on Oct~30th,~2013). The second figure is the ranking by only considering large displacement motions (flow velocity larger than 40 pixels per frame).

Error threshold 5 pixels ▼ Evaluation area All pixels Optical Flow Evaluation This table ranks general optical flow methods, performing a full 2D search, as compared to the motion stereo methods below Rank Method Setting Code Out-Noc Out-All Avg-Noc Avg-All Density Runtime Environment 4 cores @ 3.0 Ghz (Matlab + C/C++) SceneFlow M→W 1.83 % 3.59 % 0.8 px 1.3 px 100.00 % 6 min 2.34 % 4.79 % 0.9 px 1.7 px 100.00 % 200 s 4 cores @ 3.0 Ghz (Matlab + C/C++) 2 PR-Sf+E 1861 3→ 2.58 % 6.26 % 0.9 px 2.2 px 100.00 % 3 min 4 cores @ 2.5 Ghz (Matlab + C/C++) 3 PCBP-Flow → ※ n: Robust Monocular Epipolar Flow Estimation, CVPR 2013 4 PR-Sceneflow M 3 → 2.65 % 5.38 % 1.2 px 2.8 px 100.00 % 150 sec 4 core @ 3.0 Ghz (Matlab + C/C++) er: <u>Piecewise Rigid Scene Flow</u>. International Confere 2.74 % 8.12 % 1.0 px 2.7 px 100.00 % 11 s MotionSLIC → ※ 1 core @ 3.0 Ghz (C/C++) 4.52 % 10.45 % 1.6 px 4.3 px 100.00 % 1 min 1 core @ 2.5 Ghz (Matlab + C/C++) gtRF-DF 📑 7 TGV2ADCSIFT 🔄 4.71 % 12.19 % 1.6 px 4.5 px 100.00 % 12s GPU @ 2.4 Ghz (C/C++) 5.37 % 15.54 % 2.0 px 6.1 px 100.00 % 180 s 8 TVL1-HOG 3→ 2 cores @ 3.0 Ghz (Matlab) 5.38 % 14.70 % 1.5 px 5.8 px 100.00 % 17 s 1 core @ 3.6Ghz (Python + C/C++) Schmid: DeepFlow: Large displacement optical flow with deep m 10 Data-Flow 🕏 5.44 % 11.77 % 1.9 px 5.5 px 100.00 % 3 min 2 cores @ 2.5 Ghz (Matlab + C/C++) 6.26 % 15.59 % 2.1 px 5.7 px 100.00 % 9.0 s 11 DescFlow 3 GPU @ 2.5 Ghz (C/C++) 6.87 % 15.91 % 2.5 px 6.7 px 100.00 % 160 s 2 cores @ 2.5 Ghz (Matlab) 6.90 % 15.02 % 2.7 px 6.5 px 100.00 % 18 s 13 GPU @ 1.0 Ghz (C/C++) CRTflow code 8.04 % 17.14 % 2.6 px 7.1 px 100.00 % 8.5 min 14 1 core @ 3.0 Ghz (Matlab) sis of Current Practices in Optical F 15 IVANN 3 8.33 % 17.92 % 2.7 px 7.4 px 100.00 % 1073 s 1 core @ 2.5 Ghz (Matlab) code 8.34 % 17.35 % 2.8 px 7.2 px 100.00 % 14.8 min C+NL 1 core @ 3.0 Ghz (Matlab) k: A Quantitative Analysis of Current Practices in Optical Flow Estimation and The Principles Behind Them. 2013 8.44 % 20.63 % 3.2 px 12.2 px 100.00 % 60 s 17 3 1 core @ 2.4 Ghz (C/C++) fSGM code 8.62 % 18.86 % 2.5 px 9.2 px 100.00 % 0.25 s GPU @ 1.0 Ghz (C/C++) code 9.19 % 15.68 % 2.9 px 6.6 px 100.00 % 4 s GPU+CPU @ 3.0 Ghz (Matlab + C/C++) 19 TGV2CENSUS ➡ . 2012. ng Variational Stereo Estimation. IV 2012. code 10.13 % 19.07 % 3.2 px 7.8 px 100.00 % 2.9 min C+NL-fast 3 1 core @ 3.0 Ghz (Matlab) k: A Quantitative Analysis of Current Practices in Optical Flow Estimation and The Principles Behind Them, 201 code 12.47 % 21.00 % 4.0 px 9.0 px 100.00 % 2.6 min 21 HS 1 core @ 3.0 Ghz (Matlab) 14.23 % 23.53 % 3.6 px 8.8 px 100.00 % 60 s 4 cores @ 3.5 Ghz (C/C++) 22 IQFlow □ 15.31 % 25.80 % 5.0 px 12.0 px 83.73 % 1.3 s 23 GC-BM-Bino 简章米 2 cores @ 2.5 Ghz (C/C++) 24 GC-BM-Mono 🖼 Ж 15.42 % 25.93 % 5.0 px 12.1 px 84.33 % 1.3 s 2 cores @ 2.5 Ghz (C/C++) B. Kitt 16.52 % 25.60 % 5.2 px 10.8 px 100.00 % 0.026 s 25 GPU @ 700 Mhz (C/C++) 26 17.22 % 24.34 % 7.4 px 14.5 px 100.00 % 5 min 2 cores @ 2.5 Ghz (Matlab) C+NL-M 18.21 % 27.83 % 7.2 px 15.0 px 100.00 % 10 min 27 1 core @ 2.5 Ghz (C/C++) 18.34 % 27.22 % 10.9 px 16.0 px 100.00 % 110 s 1 core @ 2.5 Ghz (C/C++) 28 ALD RSRS-Flow 3 18.65 % 27.13 % 6.2 px 12.1 px 100.00 % 4 min 1 core @ 2.5 Ghz (Matlab) 30 code 18.72 % 27.97 % 5.5 px 12.4 px 100.00 % 1 min 1 core @ 2.5 Ghz (C/C++) LDOF 31 26.33 % 35.64 % 7.0 px 15.3 px 48.27 % 2.4 s 1 core @ 2.5 Ghz (C/C++) GCSF 32 code 26.50 % 35.10 % 7.8 px 14.6 px 100.00 % 16 s 1 core @ 2.5 Ghz (Matlab) DB-TV-L1 → C. Zach chof: A Duality Based Approach for Realtime TV-L1 Optical Flow. DAGM 2007. 30.63 % 39.00 % 8.5 px 16.2 px 15.26 % 0.231 s GPU @ 700 Mhz (C/C++) GeForce GTX 680 33 BERLOF [♣ r and T. Sikora: <u>Robust Local Optical Flow Estimation using Bilinear Eq</u> RLOF code 31.49 % 39.83 % 8.7 px 16.5 px 14.76 % 0.488 s GPU @ 700 Mhz (C/C++) GeForce GTX 680 Optical Flow for Feature Tracking. TCSVT 2012. code 32.48 % 40.12 % 11.1 px 18.2 px 100.00 % 16.2 s 35 1 core @ 2.5 Ghz (C/C++) erg and J. Weickert: High accuracy optical flow estimation based on a theory for warping. ECCV 2004 44.53 % 51.03 % 17.2 px 25.2 px 100.00 % 1 s 36 PolyExpand 3÷ 1 core @ 2.5 Ghz (C/C++)

The settings column describes additional assumptions made / information used by the methods:

ntation of the Lucas Kanade feature tracker. Intel 2000

37 Pyramid-LK →

40 <u>AVERAGE</u> 3

OCV-BM ☐

MEDIAN →

38

39

code 57.22 % 62.72 % 21.7 px 33.1 px 99.90 % 1.5 min

code 60.41 % 65.49 % 24.4 px 33.3 px 100.00 % 1.5 min

66.55 % 71.52 % 16.0 px 23.9 px 99.94 % 0.01 s

67.92 % 72.68 % 16.3 px 24.6 px 99.94 % 0.01 s

Figure 3: Bad pixel ranking (threshold 5 pixels) on KITTI benchmark (captured on *Oct 30th*, 2013). Note that in the "setting" column, more than one icon means the method is not a pure optical flow estimation method.

This table as LaTeX

1 core @ 2.5 Ghz (Matlab)

1 core @ 2.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

[■] ms = motion stereo: Usage of the epipolar geometry to restrict the search problem to 1D

Average		Army	Meauon	Schefflera	Wooden	Grove	Urban	Yosemite	Teddy
endpoint		(Hidden texture)	(Hidden texture)	(Hidden texture)	(Hidden texture)	(Synthetic)	(Synthetic)	(Synthetic)	(Stereo)
error	avg. rank	GT im0 im1 all disc untext	GT im0 im1 t all disc untext	GT im0 im1 all disc untext	GT im0 im1 all disc untext	GT im0 im1 all disc untext	GT im0 im1 all disc untext	GT im0 im1 all disc untext	GT im0 im1 all disc un
IVANN [91]	2.6	0.07 1 0.20 2 0.05 1	0.15 1 0.513 0.125	0.18 1 0.37 1 0.14 1	0.10 2 0.49 3 0.06 2	0.41 1 0.61 1 0.21 2	0.23 2 0.66 2 0.19 1	0.10 4 0.12 8 0.17 m	0.34 1 0.80 4 0.3
OFLAF [80]	6.6	0.087 0.213 0.065	0.16 5 0.53 4 0.12 5	0.19 2 0.37 1 0.14 1	0.147 0.7721 0.074	0.51 4 0.78 5 0.25 3	0.31 4 0.763 0.256	0.11 10 0.12 8 0.21 29	0.427 0.782 0.6
MDP-Flow2 [69] NN-field [72]	7.5 8.3	0.087 0.213 0.0714 0.087 0.2213 0.051	0.15 1 0.48 1 0.11 1 0.17 7 0.55 6 0.13 10	0.20 4 0.40 4 0.14 1 0.19 2 0.39 3 0.15 6	0.15 17 0.80 26 0.08 11 0.09 1 0.48 2 0.05 1	0.63 13 0.93 14 0.43 14 0.41 1 0.61 1 0.20 1	0.263 0.763 0.235 0.5242 0.641 0.269	0.11 to 0.12 s 0.17 tt 0.13 to 0.13 to 0.20 22	0.38 3 0.79 3 0. 0.35 2 0.83 5 0.
Epistemic [81]	9.6	0.07 1 0.21 3 0.05 1	0.16 s 0.55 6 0.12 s	0.204 0.447 0.156	0.11 3 0.65 6 0.06 2	0.71 26 1.07 30 0.53 27	0.32 6 1.06 18 0.28 11	0.11 to 0.13 26 0.15 7	0.41 6 0.88 9 0.
TC/T-Flow [79]	14.3	0.07 1 0.21 3 0.05 1	0.19 13 0.68 24 0.12 5	0.28 17 0.66 22 0.14 1	0.14 7 0.86 31 0.07 4	<u>0.67</u> 22 0.98 21 0.49 23	0.22 1 0.82 5 0.19 1	0.11 10 0.11 1 0.30 66	<u>0.50</u> 24 1.02 26 0.
Layers++ [37] ADF [66]	15.6 15.7	0.087 0.213 0.0714 0.087 0.2213 0.065		0.29 22 0.71 27 0.17 12	0.13 6 0.58 4 0.07 4 0.16 28 0.91 39 0.07 4	0.48 3 0.70 3 0.33 6 0.69 24 1.03 24 0.47 18	0.47 29 1.01 13 0.33 30 0.43 18 0.91 8 0.28 11	0.12 20 0.12 8 0.20 22	0.46 13 0.88 9 0. 0.43 8 0.88 9 0.
LME [71]	15.7	0.087 0.2213 0.065	0.15 1 0.49 2 0.11 1	0.30 26 0.64 17 0.31 63	0.15 17 0.78 23 0.09 23	0.66 18 0.96 18 0.53 27	0.33 7 1.18 28 0.28 11	0.12 20 0.12 8 0.20 22	0.44 9 0.91 12 0.
IROF++ [58]	16.5	0.08 7 0.23 18 0.07 14		0.28 17 0.63 16 0.19 27	0.15 17 0.73 17 0.09 23	<u>0.60</u> 10 0.89 10 0.42 13	0.43 18 1.08 21 0.31 21	0.10 4 0.128 0.124	0.47 15 0.98 20 0.
nLayers [57]	16.7	0.07 1 0.19 1 0.06 5		0.25 12 0.54 11 0.20 36	0.15 17 0.84 29 0.08 11	0.53 5 0.78 5 0.34 8	0.44 22 0.84 6 0.30 18	0.13 30 0.13 26 0.20 22	0.47 15 0.97 19 0.
FC-2Layers-FF [76] Correlation Flow [78]	18.7 18.7	0.08 7 0.21 3 0.07 14 0.09 27 0.23 18 0.07 14		0.20 4 0.40 4 0.18 17 0.43 41 0.99 44 0.15 6	0.15 17 0.76 20 0.08 11 0.11 3 0.47 1 0.08 11	0.53 5 0.77 4 0.37 9 0.75 31 1.08 31 0.56 31	0.49 35 1.02 14 0.33 30 0.41 15 0.92 9 0.30 18	0.16 59 0.13 26 0.29 61 0.14 39 0.13 26 0.27 53	0.44 9 0.87 8 0. 0.40 5 0.85 6 0
AGIF+OF [89]	20.2		0.23 41 0.73 33 0.18 33	0.28 17 0.66 22 0.18 17	0.14 7 0.70 9 0.08 11	0.57 7 0.85 7 0.38 10	0.47 29 0.97 11 0.31 21	0.13 30 0.13 26 0.22 33	0.51 29 0.99 23 0.
	21.6	0.07 1 0.213 0.065		0.31 31 0.78 34 0.14 1	0.16 28 0.86 31 0.08 11	0.75 31 1.11 33 0.54 29	0.42 17 1.40 43 0.25 6	0.11 10 0.12 8 0.29 61	0.62 37 1.35 37 0.
	21.7	0.08 7 0.21 3 0.07 14 0.08 7 0.23 18 0.07 14		0.27 13 0.61 14 0.18 17 0.30 26 0.70 25 0.18 17	0.14 7 0.68 7 0.08 11 0.14 7 0.72 16 0.08 11	0.61 12 0.89 10 0.44 15 0.63 13 0.93 14 0.45 17	0.47 29 1.03 16 0.32 25 0.51 39 1.03 16 0.32 25	0.14 39 0.15 54 0.25 45 0.14 39 0.12 8 0.30 66	
	21.8	0.07 1 0.213 0.065		0.30 26 0.73 29 0.15 6	0.17 33 0.92 43 0.07 4	0.78 34 1.14 34 0.59 34	0.33 7 1.30 35 0.21 3	0.12 20 0.12 8 0.28 56	0.54 33 1.19 35 0.
	21.8	0.08 7 0.23 18 0.07 14	0.22 29 0.71 29 0.17 24	0.27 13 0.60 13 0.19 27	0.14 7 0.73 17 0.08 11	0.63 13 0.92 13 0.44 15	0.51 39 1.08 21 0.33 30	0.15 49 0.13 26 0.29 61	<u>0.47</u> 15 0.93 13 0.
	22.1	0.08 7 0.26 35 0.06 5	<u>0.18</u> 9 0.62 15 0.14 14	0.30 26 0.74 31 0.19 27	0.15 17 0.86 31 0.07 4	0.79 35 1.14 34 0.74 50	0.35 10 0.87 7 0.28 11	0.14 39 0.12 8 0.28 56	0.49 20 0.94 15 0
earse-NonSparse [56] Efficient-NL [60]	22.3	0.087 0.23 18 0.07 14 0.087 0.22 13 0.06 5	0.22 29 0.73 33 0.18 33 0.21 24 0.67 22 0.17 24	0.28 17 0.64 17 0.19 27 0.31 31 0.73 29 0.18 17	0.14 7 0.71 13 0.08 11 0.14 7 0.71 13 0.08 11	0.67 22 0.99 23 0.48 21 0.59 9 0.88 9 0.39 11	0.49 35 1.06 18 0.32 25 1.30 69 1.35 38 0.67 65	0.14 39 0.11 1 0.28 56 0.14 39 0.13 26 0.26 47	0.49 20 0.98 20 0. 0.45 11 0.85 6 0
	23.8		0.22 29 0.73 33 0.18 33	0.28 17 0.64 17 0.19 27	0.14 7 0.70 9 0.09 23	0.66 18 0.97 19 0.48 21	0.50 37 1.06 18 0.33 30	0.15 49 0.12 8 0.29 61	0.50 24 0.99 23 0.
Ramp [62]	24.4	0.08 7 0.24 26 0.07 14	<u>0.21</u> 24 0.72 31 0.18 33	<u>0.27</u> 13 0.62 15 0.19 27	0.15 17 0.71 13 0.09 23	<u>0.66</u> 18 0.97 19 0.49 23	<u>0.51</u> 39 1.09 23 0.34 36	0.15 49 0.12 8 0.30 66	
	26.3 26.5	0.087 0.23 18 0.07 14		0.29 22 0.65 21 0.19 27	0.15 17 0.73 17 0.09 23	0.64 17 0.93 14 0.47 18	0.52 42 1.12 25 0.33 30	0.16 59 0.13 26 0.29 61	0.49 20 0.98 20 0
TV-L1-MCT [64] PMF [75]		0.08 7 0.23 18 0.07 14 0.09 27 0.25 29 0.07 14		0.32 34 0.76 33 0.19 27 0.23 9 0.46 9 0.17 12	0.14 7 0.69 8 0.09 23 0.17 33 0.87 35 0.09 23	0.72 28 1.03 24 0.60 35 0.58 8 0.86 8 0.26 4	0.54 44 1.10 24 0.35 37 0.82 58 1.17 26 0.54 56	0.11 to 0.12 s 0.20 22 0.21 so 0.22 ss 0.36 77	0.54 33 1.04 30 0. 0.39 4 0.75 1 0
	-		0.22 29 0.77 41 0.19 42		0.18 38 0.93 46 0.11 40	0.73 29 1.04 27 0.56 31	0.44 22 1.69 58 0.31 21	0.09 3 0.11 1 0.12 4	
MDP-Flow [26]			0.19 13 0.54 5 0.18 33	0.24 10 0.55 12 0.20 36	0.16 28 0.91 39 0.09 23	0.74 30 1.06 29 0.61 37		0.12 20 0.14 44 0.17 11	
			0.19 13 0.67 22 0.13 10 0.19 13 0.69 26 0.14 14					0.19 72 0.15 54 0.45 84 0.10 4 0.13 26 0.18 15	
	-		0.19 13 0.69 26 0.14 14 0.22 29 0.63 17 0.19 42	0.43 41 1.02 47 0.17 12 0.38 38 0.91 38 0.18 17	0.17 33 1.08 52 0.08 ft 0.17 33 0.85 30 0.09 23	0.87 43 1.25 41 0.73 47 0.75 31 1.09 32 0.47 18	0.43 18 1.69 58 0.32 25 0.34 9 1.00 12 0.26 9	0.10 4 0.13 26 0.18 15 0.22 82 0.22 85 0.28 56	0.59 % 1.40 41 0. 0.53 32 1.13 33 0.
CostFilter [40]		0.10 38 0.27 41 0.08 34		0.22 8 0.45 8 0.18 17	0.19 42 0.88 37 0.12 44	0.60 10 0.90 12 0.28 5	0.75 55 1.19 29 0.50 53	0.21 so 0.24 so 0.40 st	0.46 13 1.02 26 0
	_	0.10 38 0.26 35 0.08 34		0.35 36 0.85 36 0.16 10	0.15 17 0.70 9 0.09 23	0.79 35 1.16 37 0.51 25	0.78 55 1.38 40 0.48 52	0.16 59 0.15 54 0.26 47	0.55 as 1.16 a4 0
S2D-Matching [88] Aniso-Texture [86]	33.3 35.1	0.09 27 0.26 35 0.07 14	0.23 41 0.80 48 0.18 33 0.19 13 0.60 13 0.17 24	0.38 38 0.93 39 0.20 36 0.50 50 1.11 51 0.21 41	0.15 17 0.70 9 0.09 23 0.12 5 0.58 4 0.07 4	0.70 25 1.03 24 0.51 25 0.93 54 1.28 49 0.92 59	0.55 46 1.17 26 0.35 37 0.46 26 1.27 32 0.38 46	0.17 65 0.13 26 0.32 73 0.20 73 0.20 82 0.30 66	0.51 29 1.01 25 0 0.68 42 1.37 39 0
SimpleFlow [49]	35.5	0.09 27 0.24 26 0.08 34		0.43 41 0.96 42 0.21 41	0.16 28 0.77 21 0.09 23	0.71 26 1.04 27 0.55 30	1.47 74 1.59 54 0.76 68	0.13 30 0.12 8 0.22 33	
	35.9	0.09 27 0.26 35 0.07 14		0.51 52 1.15 56 0.21 41	0.18 38 0.91 39 0.10 37	0.87 43 1.25 41 0.72 44	0.47 29 1.38 40 0.36 41		0.83 58 1.78 61 0.
Adaptive [20]	_	0.09 27 0.26 35 0.06 5		0.54 56 1.19 61 0.21 41	0.18 38 0.91 39 0.10 37	0.88 46 1.25 41 0.73 47	0.50 37 1.28 33 0.31 21	0.14 39 0.16 62 0.22 33	
, , , , , , , , , , , , , , , , , , , ,	40.5	0.11 43 0.28 42 0.10 56		0.31 31 0.75 32 0.18 17	0.19 42 0.97 47 0.12 44 0.24 54 0.88 37 0.20 65	0.97 60 1.31 56 1.00 64	1.78 83 1.73 61 0.87 76	0.11 10 0.12 8 0.22 33	0.68 42 1.48 43 0.
TCOF [70] DPOF [18]	-	0.11 43 0.28 42 0.09 46 0.12 59 0.33 60 0.08 34		0.53 53 1.15 56 0.29 59 0.24 10 0.49 10 0.20 36	0.19 42 0.83 28 0.13 48	0.88 46 1.26 45 0.69 41 0.66 18 0.98 21 0.40 12	0.38 11 0.93 10 0.29 16 1.11 65 1.41 45 0.57 60	0.16 59 0.16 62 0.22 33 0.25 87 0.14 44 0.55 87	0.49 20 1.03 29 0. 0.51 29 1.02 26 0
ACK-Prior [27]	_	0.11 43 0.25 29 0.09 46		0.27 13 0.64 17 0.16 10	0.15 17 0.78 23 0.09 23	0.82 38 1.14 34 0.71 43	1.90 84 1.90 67 0.99 80	0.23 as 0.17 as 0.49 as	0.77 52 1.44 42 0.
	43.0	<u>0.11</u> 43 0.29 47 0.10 56		0.32 34 0.79 35 0.17 12	0.19 42 0.99 48 0.11 40	0.89 48 1.29 50 0.73 47	1.25 67 1.74 62 0.64 64	0.14 39 0.13 26 0.30 66	<u>0.64</u> 39 1.50 45 0.
Classic++ [32] Aniso. Huber-L1 [22]	43.9 44.2	0.09 27 0.25 29 0.07 14 0.10 38 0.28 42 0.08 34		0.43 41 1.00 45 0.22 46 0.56 59 1.13 52 0.29 59	0.20 46 1.11 53 0.10 37 0.20 46 0.92 43 0.13 48	0.87 43 1.30 53 0.66 40 0.84 40 1.20 38 0.70 42	0.47 29 1.62 55 0.33 30 0.39 13 1.23 30 0.28 11	0.17 65 0.14 44 0.32 73 0.17 65 0.15 54 0.27 53	0.79 55 1.64 54 0. 0.64 39 1.36 38 0.
CRTflow [84]	45.9	0.11 43 0.30 51 0.08 34		0.50 so 1.13 sz 0.21 41	0.23 53 1.24 60 0.12 44	0.86 42 1.27 47 0.65 39	0.60 48 1.95 72 0.50 53	0.12 20 0.14 44 0.21 29	0.79 55 1.77 60 0
	_	0.12 so 0.31 s4 0.11 63		<u>0.44</u> 47 1.00 45 0.33 64	0.26 60 1.34 67 0.15 56	0.81 37 1.21 39 0.58 33	0.38 tt 1.55 53 0.25 6	0.11 10 0.11 1 0.24 41	0.93 64 1.82 65 1.
TriangleFlow [30] SIOF [68]	-	0.11 43 0.29 47 0.09 46 0.11 43 0.28 42 0.09 46		0.47 49 1.07 48 0.18 17 0.60 65 1.17 58 0.48 65	0.16 28 0.87 35 0.09 23 0.25 58 1.13 54 0.16 57	1.07 68 1.47 73 1.10 68 0.97 60 1.33 59 1.03 65	0.87 59 1.39 42 0.57 60 0.43 18 1.32 36 0.36 41	0.15 49 0.19 80 0.23 40 0.13 30 0.13 26 0.18 15	
TV-L1-improved [17]	49.1		0.20 22 0.71 29 0.16 21	0.53 53 1.18 60 0.22 46	0.21 50 1.24 60 0.11 40	0.90 49 1.31 56 0.72 44	1.51 76 1.93 70 0.84 72	0.18 70 0.17 69 0.31 71	0.73 47 1.62 53 0
		0.10 38 0.28 42 0.09 46		0.43 41 0.95 41 0.26 52	0.21 so 1.14 ss 0.13 48	<u>0.90</u> 49 1.27 47 0.82 54	0.41 15 1.23 30 0.30 18	0.23 as 0.19 ao 0.39 ao	<u>0.76</u> 50 1.56 49 1.
	-	0.12 59 0.35 64 0.08 34 0.14 67 0.34 61 0.14 71		0.61 67 1.30 69 0.28 56	0.18 38 0.80 26 0.13 48	0.93 54 1.29 50 0.79 52 0.83 39 1.21 39 0.63 38	0.98 62 1.48 49 0.56 59	0.12 20 0.14 44 0.21 29	0.73 47 1.48 43 0
Brox et al. [5]	52.0 52.3	0.11 43 0.32 58 0.11 63		0.72 71 1.25 66 0.52 66 0.39 40 0.94 40 0.24 50	0.31 68 1.39 70 0.22 67 0.24 54 1.25 62 0.13 48	1.10 73 1.39 68 1.43 80	0.39 13 1.29 34 0.29 16 0.89 61 1.77 64 0.55 58	0.11 10 0.11 1 0.22 33 0.10 4 0.13 26 0.11 2	1.06 69 1.87 67 1. 0.91 61 1.83 66 1.
CLG-TV [48]	52.7	0.11 43 0.29 47 0.09 46		0.55 57 1.17 58 0.28 56	0.25 ss 1.05 so 0.17 so	0.92 53 1.30 53 0.79 52	0.47 29 1.72 60 0.35 37	0.17 65 0.17 69 0.25 45	
F-TV-L1 [15]			0.34 64 0.98 62 0.26 62		0.27 63 1.36 69 0.16 57			0.13 30 0.15 54 0.20 22	
FastOF [77]			0.35 67 1.05 66 0.27 63		0.22 52 0.92 43 0.16 57 0.28 65 1.23 59 0.21 66			0.15 49 0.12 8 0.22 33	
SuperFlow [85] Fusion [6]			0.34 64 0.85 54 0.33 66 0.19 13 0.69 26 0.16 21	0.29 22 0.66 22 0.23 48	0.20 46 1.19 57 0.14 54		0.46 26 1.49 50 0.36 41 1.35 70 1.49 50 0.86 74	0.15 49 0.16 62 0.19 18 0.20 73 0.20 82 0.26 47	
Rannacher [23]	54.1	0.11 43 0.31 54 0.09 46	0.25 49 0.84 53 0.21 55	0.57 61 1.27 68 0.26 52	0.24 54 1.32 65 0.13 48	0.91 52 1.33 59 0.72 44	1.49 75 1.95 72 0.78 69	0.15 49 0.14 44 0.26 47	0.69 45 1.58 52 0
			0.26 s2 0.93 s8 0.20 s1	0.57 61 1.25 66 0.26 52	0.20 46 1.04 49 0.12 44		0.61 so 1.93 70 0.47 st	0.20 73 0.16 62 0.34 76	
p-harmonic [29] Bartels [41]			0.25 49 0.82 51 0.21 55 0.22 29 0.65 21 0.19 42	0.57 61 1.24 63 0.28 56 0.35 36 0.86 37 0.23 48	0.26 60 1.20 58 0.19 64 0.28 65 1.32 65 0.18 62	1.07 68 1.39 68 1.31 76 0.97 60 1.38 65 0.98 61	0.44 22 1.65 57 0.37 45 1.20 66 1.76 63 0.78 69	0.15 49 0.16 62 0.21 29 0.20 73 0.17 69 0.48 85	
Dynamic MRF [7]	58.5	0.12 59 0.34 61 0.11 63	0.22 29 0.89 57 0.16 21	0.44 47 1.13 52 0.20 36	0.24 54 1.29 64 0.14 54	1.11 74 1.52 80 1.13 70	1.54 77 2.37 84 0.93 77	0.13 30 0.12 8 0.31 71	1.27 78 2.33 84 1.
SegOF [10]			0.57 73 1.16 73 0.59 78		0.32 69 0.86 31 0.26 69	1.18 to 1.50 79 1.47 82	1.63 ≈ 2.09 76 0.96 78	0.08 2 0.13 26 0.12 4	
LDOF [28] Ad-TV-NDC [36]	-	0.12 59 0.35 64 0.10 56 0.23 at 0.40 75 0.31 at	0.32 61 1.06 68 0.24 60 0.92 84 1.42 81 0.93 83	0.43 41 0.98 43 0.30 62 1.05 81 1.60 78 0.74 76	0.45 73 2.48 89 0.26 69 0.48 74 1.27 63 0.49 76	1.01 66 1.37 64 1.05 66 0.85 41 1.25 41 0.60 35	1.10 64 2.08 75 0.67 65 0.44 22 1.47 47 0.32 25	0.12 20 0.15 54 0.24 41 0.12 20 0.13 26 0.19 18	
StereoFlow [44]		0.46 92 0.77 91 0.47 89		1.30 ss 1.94 sr 1.02 sr	1.33 so 2.98 so 1.16 ss	1.08 71 1.49 76 0.99 62	0.31 4 1.40 43 0.22 4	0.07 1 0.11 1 0.08 1	0.98 67 1.88 68 1.
Shiralkar [42]	64.8	0.13 66 0.39 72 0.10 56	0.28 57 1.08 69 0.19 42	0.61 67 1.33 72 0.25 51	0.27 63 1.35 68 0.18 62	1.01 66 1.47 73 0.90 58	0.88 60 2.04 74 0.54 56	0.20 73 0.16 62 0.42 82	1.04 68 2.13 79 1.
	-	0.11 43 0.32 58 0.09 46		0.55 57 1.24 63 0.29 59	0.36 70 1.56 74 0.25 68	1.25 83 1.64 85 1.41 78	1.55 79 2.32 83 0.85 73 0.80 57 1 43 45 0.58 63	0.14 39 0.18 75 0.24 41 0.20 73 0.18 75 0.32 73	1.09 72 2.09 78 1.
IAOF2 [51] Filter Flow [19]		0.14 67 0.35 64 0.12 68 0.17 72 0.39 72 0.13 69	0.42 68 1.09 71 0.38 68 0.43 69 1.09 71 0.38 68	0.64 69 1.32 71 0.55 68 0.75 72 1.34 73 0.78 79	0.92 at 1.60 76 1.04 at 0.70 at 1.54 73 0.68 79	1.00 65 1.38 65 0.94 60 1.13 77 1.38 65 1.51 83	0.80 57 1.43 46 0.58 62 0.57 47 1.32 36 0.44 48	0.20 73 0.18 75 0.32 73 0.22 82 0.23 88 0.26 47	0.92 63 1.66 56 1. 0.96 66 1.66 56 1.
	69.3	0.19 78 0.46 79 0.17 75	0.49 72 1.08 69 0.51 74	0.93 76 1.59 76 0.82 81	0.49 75 1.65 79 0.42 74	1.14 78 1.48 75 1.42 79	1.06 63 2.16 so 0.68 67	0.12 20 0.14 44 0.20 22	
GroupFlow [9]	-		0.79 sz 1.69 ss 0.72 sı	0.86 75 1.64 79 0.74 76	0.30 67 1.07 51 0.26 69	1.29 × 1.81 × 0.82 54	1.94 × 2.30 × 1.36 ×	0.11 10 0.14 44 0.19 18	
GraphCuts [14] SPSA-learn [13]	_		0.59 76 1.36 80 0.46 71 0.57 73 1.32 78 0.51 74	0.56 59 1.07 48 0.64 71 0.84 74 1.50 74 0.72 74	0.26 60 1.14 55 0.17 60 0.52 77 1.64 78 0.49 76	0.96 58 1.35 62 0.84 57 1.12 76 1.42 70 1.39 77	2.25 90 1.79 65 1.22 86 1.75 82 2.14 78 1.06 83	0.22 82 0.17 69 0.43 83 0.13 30 0.13 26 0.19 18	1.22 77 2.05 73 1. 1.32 ∞ 2.08 77 1.
IAOF [50]		0.17 72 0.39 72 0.18 77		1.20 as 1.87 as 0.73 75	0.66 79 1.46 71 0.72 au	0.99 63 1.36 63 0.99 62	0.73 54 1.83 56 0.45 49		
Black & Anandan [4]	70.3	0.18 76 0.42 77 0.19 78	0.58 75 1.31 77 0.50 73	<u>0.95</u> 78 1.58 75 0.70 73	0.49 75 1.59 75 0.45 75	1.08 71 1.42 70 1.22 73	1.43 72 2.28 81 0.83 71	0.15 49 0.17 69 0.17 11	<u>1.11</u> 73 1.98 71 1.
BlockOverlap [61]		0.17 72 0.35 64 0.16 74		0.75 72 1.31 70 0.59 69	0.40 72 1.47 72 0.33 73	0.96 58 1.26 45 1.14 71	1.40 71 1.47 47 0.86 74	0.31 90 0.22 85 0.86 91	
	-		0.61 77 1.34 79 0.59 78 0.67 80 1.21 74 0.70 80	0.95 78 1.68 to 0.76 78 1.12 to 1.80 to 0.99 to	0.38 71 1.63 77 0.27 72 1.07 86 2.06 84 1.12 87	1.11 74 1.49 76 1.27 75 1.23 82 1.52 80 1.62 86	0.66 51 1.53 52 0.45 49 1.54 77 2.15 79 0.96 78	0.20 73 0.18 75 0.28 56 0.10 4 0.11 1 0.16 9	
Nguyen [33]		0.22 to 0.47 to 0.19 78		1.17 84 1.81 84 0.92 84	0.99 st 1.82 so 1.07 st	1.17 79 1.49 76 1.46 81	0.72 53 2.09 76 0.60 63	0.14 39 0.14 44 0.20 22	1.37 81 2.18 82 1.
Horn & Schunck [3]	77.0	0.22 to 0.55 to 0.22 to	0.61 77 1.53 83 0.52 76	1.01 to 1.73 at 0.80 to	0.78 at 2.02 at 0.77 at	1.26 84 1.58 83 1.55 84	1.43 72 2.59 87 1.00 81	<u>0.16</u> 59 0.18 75 0.15 7	1.51 84 2.50 85 1.
TI-DOFE [24]	-	0.38 90 0.64 87 0.47 89		1.39 90 2.06 92 1.17 89	1.29 8 2.21 8 1.41 90	1.27 85 1.61 84 1.57 85	1.28 68 2.57 86 1.01 82	0.13 30 0.15 54 0.16 9	1.87 87 2.71 87 2
SILK [83] Adaptive flow [45]			0.77 at 1.49 at 0.79 at 1.21 at 1.60 at 1.23 at	1.14 83 1.83 85 0.84 82 1.21 86 1.77 82 1.18 90	0.59 78 1.82 80 0.55 78 0.94 83 2.03 83 0.97 82			0.16 59 0.13 26 0.36 77 0.59 92 0.37 92 1.37 92	
	-		1.09 as 1.77 ar 1.21 ar	1.25 ss 1.98 ss 1.03 ss	1.56 91 2.26 87 1.71 91		_	0.17 65 0.16 62 0.26 47	
		0.31 87 0.78 92 0.20 80		1.86 92 2.00 90 1.66 92	1.15 s7 3.05 91 1.07 84	5.17 92 6.79 92 4.19 92	3.79 92 5.26 92 2.93 92	0.12 20 0.18 75 0.36 77	2.67 90 5.01 91 3
PGAM+LK [55]			1.08 as 1.89 as 1.15 as	0.94 77 1.59 76 0.88 83	1.40 90 3.28 92 1.33 89	1.37 88 1.70 87 1.67 87	2.10 ss 2.53 ss 1.39 ss	0.36 91 0.28 91 0.65 88	1.89 ss 2.72 ss 2.
FOLKI [16]			1.52 90 1.96 90 1.80 91	1.23 87 2.04 91 0.95 85	0.99 84 2.20 85 1.08 86	1.53 as 1.85 so 2.07 as	2.14 89 3.23 91 1.60 90	0.26 88 0.21 84 0.68 89	2.67 so 3.27 so 4.

Figure 4: Average endpoint error (EPE) ranking on Middlebury benchmark (captured on Oct~30th, 2013). The ranking is for our algorithm without hierarchical matching (only one record for each publication is allowed on this benchmark).

Figure 5: Our results on MPI Sintel benchmark.

Figure 6: Our results on KITTI benchmark (with MPI Sintel color coding for visual show).