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Abstract

This paper presents a real-time decolorization method.
Given the human visual systems preference for luminance
information, the luminance should be preserved as much as
possible during decolorization. As a result, the proposed
decolorization method measures the amount of color con-
trast/detail lost when converting color to luminance. The
detail loss is estimated by computing the difference between
two intermediate images: one obtained by applying bilat-
eral filter to the original color image, and the other ob-
tained by applying joint bilateral filter to the original color
image with its luminance as the guidance image. The es-
timated detail loss is then mapped to a grayscale image
named residual image by minimizing the difference between
the image gradients of the input color image and the ob-
jective grayscale image that is the sum of the residual im-
age and the luminance. Apparently, the residual image will
contain pixels with all zero values (that is the two interme-
diate images will be the same) only when no visual detail
is missing in the luminance. Unlike most previous methods,
the proposed decolorization method preserves both contrast
in the color image and the luminance. Quantitative eval-
uation shows that it is the top performer on the standard
test suite. Meanwhile it is very robust and can be directly
used to convert videos while maintaining the temporal co-
herence. Specifically it can convert a high-resolution video
(1280 × 720) in real time (about 28 Hz) on a 3.4 GHz i7
CPU.

1. Introduction

Color-to-gray conversion is widely used in single-
channel image processing applications. The conversion is
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(d) [11] (e) [12] (f) [13]

(g) [14] (h) Residual image (i) Ours
Figure 1. A color image (a) often reveals important visual details
missing from its luminance (b). Recently, a number of color-to-
gray conversion methods have been proposed to preserve contrast
with respect to the original color image. However, the contrast of
the converted grayscale image will be either lower than the original
color image (see (c)-(e)) or the contrast in the luminance (b) will
be lost (see (f)). This paper proposes to combine the luminance
(b) and a residual image (h) derived from the color image to a
grayscale image (i) that preserves contrast in both the color image
(a) and the luminance (b). Note: the residual image (h) is scaled
for visualization purpose.

a dimensionality reduction process that three dimensional
data has to be reflected in one dimension in the same range.
This reduction inevitably suffers from information loss. For
instance, the contrast around the sun and its reflection in
Figure 1 (a) is not clearly reflected in its luminance (b) due
to the removal of chromaticity. It deserves to analysis how
we should organize data in the limited space to preserve
these visual details.
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This paper proposes a color-to-gray conversion method
that is simple, effective, efficient and robust. Because the
human visual system is more sensitive to luminance than the
chromaticity values, the luminance information ought to be
kept as much as possible. This paper thus aims at recover-
ing the color contrast/detail lost in the luminance. The loss
is estimated as a color image using the bilateral filter and
next linearly mapped to a grayscale image named residual
image. The mapping function is the same at each pixel loca-
tion and is obtained by minimizing the difference between
the image gradients of the input color image and the objec-
tive grayscale image that is the sum of the residual image
and the luminance. As a result, the converted grayscale im-
age preserves the visual details in both the luminance and
the original color image. This is proved numerically using
the color contrast preserving ratio (CCPR) proposed in [13]:
quantitative evaluation shows that the proposed method is
the top performer on the 24 tested images provided by [4].

Besides being effective, a decolorization method needs
to be efficient in order to process a video in limited time
frame. The main computation involved in the proposed
method is the bilateral filter used to estimate detail loss
in the luminance. The bilateral filtering method proposed
in [23] is adapted in this paper. Due to the lack of image
structure, the size of the bilateral filter kernel is set to be as
large as the input image to cover every pixel. Large filter
kernel allows high compression on the spatial domain in a
bilateral filter [20] and enables the proposed color-to-gray
conversion method to run in real time on a 3.4 GHz i7 CPU.

Temporal consistency is ubiquitous in video data, and
need to be taken into account in video decolorization. The
grayscale image converted using the proposed method is ac-
tually the sum of the residual image and the luminance of
the original color image, thus we just need to make sure that
temporally coherent residual image can be obtained. The
residual image is linearly mapped from the estimated de-
tail loss and the linear mapping function is computed from
all the image pixels and thus robust to temporal variations.
As a result, the uncertainty can only come of the detail loss
estimated from bilateral filtering. Nevertheless, bilateral fil-
ter is a very robust filter, and temporal consistency can be
guaranteed as demonstrated in Section 4.3.

The proposed decolorization method has the following
advantages over the state-of-the-art methods:

1. Real-time performance: it can convert a 1280 × 720
resolution image in real-time on a 3.4GHz CPU, which
is comparable to the currently fastest method [14].

2. Higher quality: quantitative evaluation [13] on the
standard dataset [4] demonstrates it is the top per-
former.

3. Robust: it can be directly applied to convert every

frame during video decolorization to achieve temporal
consistency.

2. Related Work
An overview of current state-of-the-art color-to-gray

conversion methods is given in Section 2.1. A brief
overview of the bilateral filter is given in Section 2.2.

2.1. Color-to-gray Image Conversions

Traditional color to grayscale conversion such as utiliz-
ing only the luminance information fails for images with
isoluminant changes. The state-of-the-art decolorization
methods can be categorized as local and global mapping.
In local mapping pixels are processed spatially. Contrast
can be enhanced in local region. In [17] high frequency
components of chrominance is added to luminance in or-
der to enhance color edges. In [1] an optimization approach
is introduced that iteratively searched the gray levels that
best represented the local contrast between all color pairs.
In [11] chrominance edges is enhanced by using adaptively-
weighted multi-scale unsharp masking. These local ap-
proaches may not maintain the constant color regions and
visual artifacts may occur. In [19] bilateral filtering is con-
ducted by quantitative measuring the lost color contrast in
the luminance and identify proper coefficients of the color
transformation model.

In global methods [15] analyzes color differences by
predominant component analysis. The lightness and color
order could be better preserved by restraining the added
chrominance. They did not take into account spatially
distant chromatic differences, causing different colors into
similar grayscale values. In [12] a nonlinear global map-
ping method is proposed. The parameters were estimated
by minimizing cost function preserving color difference in
CIELab color space. In [18] a global energy function is pro-
posed and variationally optimized. In [6] a energy function
is defined on a clustered color image, which enabled differ-
ent color space transformations. In [13] a global optimiza-
tion approach is established aiming at maximally preserv-
ing the original color contrast. An approximation solution
to [13] is proposed in [14]. In [16] luminance and chromi-
nance is merged to obtain color difference while chromatic
contrast is enhanced. However they had to select offset an-
gle for images.

2.2. Bilateral Filter

The bilateral filter is a robust edge-preserving filter pro-
posed in [5]. It has been used in many computer vision and
computer graphics tasks, and a general overview of the ap-
plications can be found in [20]. A bilateral filter has two
filter kernels: a spatial filter kernel and a range kernel for
measuring the spatial and range distance between the cen-
ter pixel and its neighbors, respectively. The two filter ker-



nels are traditionally based on a Gaussian distribution [9].
Specifically, let Ip be the color at pixel p and IIp be the
filtered value, we want IIp to be

II(p) =

∑
q∈Ωp

Gσs
(||p− q||)Gσr

(||I(p)− I(q)||)I(q)∑
q∈Ωp

Gσs
(||p− q||)Gσr

(||I(p)− I(q)||)
,

(1)
where q is a pixel in the neighborhood Ωp of pixel p, and
Gσs andGσr are the spatial and range filter kernels measur-
ing the spatial and range/color similarities. The parameter
σs defines the size of the spatial neighborhood used to fil-
ter a pixel, and σr controls how much an adjacent pixel is
down-weighted because of the color difference. A joint (or
cross) bilateral filter [10, 7] is the same as the bilateral fil-
ter except that its range filter kernel Gσr is computed from
another image named guidance image. Let J denote the
guidance image, the joint bilateral filtered value at pixel p
is

IJ(p) =

∑
q∈Ωp

Gσs(||p− q||)Gσr (||J(p)− J(q)||)I(q)∑
q∈Ωp

Gσs(||p− q||)Gσr (||J(p)− J(q)||)
.

(2)
Note that the joint bilateral filter ensures the texture of the
filtered image IJ to follow the texture of the guidance image
J. The efficient implementation of bilateral filtering can be
found in [8, 3, 2, 23, 21, 22]

3. Decolorization Using Bilateral Filtering
An overview of the proposed method is presented in Fig-

ure 2. We first estimate the detail loss in the luminance due
to the removal of chromaticity using bilateral filtering. Fig-
ure 2 (a) and (b) are the input color image I and its lumi-
nance L, respectively, and (c) is the bilateral filtered image
II. As an edge-preserving filter, the filtered image well pre-
serves the contrast between the green dots and the two blue
numbers. σr is set to 0.02 in this experiment. The nor-
malized image coordinate is used in this paper such that it
resides in [0, 1], and σs = 2 for all the experiments con-
ducted. Image color/intensity is also normalized such that
it ranges from 0 to 1.

Figure 2 (d) presents the joint bilateral filtered image IL

with its luminance L as the guidance image. A joint bilat-
eral filter ensures that the texture of the filtered image to
follow the texture of the guidance image. Hence, because
the contrast between the green dots and the two blue num-
bers is lost in the luminance image L, it also disappears in
the joint bilateral filtered image IL. The estimate of the de-
tail loss D is then presented in Figure 2 (e) as a color image
by subtracting IL in (d) from II in (c):

Dc = IIc − ILc , c ∈ {r, g, b}. (3)

The estimate D is next linearly mapped to a grayscale image
to form the residual image R in Figure 2 (f) by minimizing

(a) Input (I). (b) Luminance (L).

(c) Bilateral filtered (d) Joint bilateral filtered
(II). with L as guidance image(IL).

(e) Estimated detail loss (f) Residual image
(D = II − IL). (R = DT · x).

(g) Output (h) Joint bilateral filtered
(G = R+ L). with G as guidance image(IG).

Figure 2. The proposed method. (a) is the input color image and
(b) is its luminance. (c) is the bilateral filtered image of (a) and
(d) is the joint bilateral filtered image using (b) as the guidance
image. The difference between (c) and (d) is presented in (e) and
is used as the estimate of the detail lost in the luminance (b). This
estimate (e) is then linearly mapped to a grayscale image named
residual image (f). The output of the proposed method is the sum
of this residual image and the luminance and is presented in (g).
(h) is the joint bilateral filtered image obtained using the converted
grayscale image (g) as the guidance image. (h) demonstrates the
improvement in preserving the contrast between the green dots and
the two blue numbers in the original color image (a).



σr = 0.03 σr = 0.05 σr = 0.10 σr = 0.15 σr = 0.20 σr = 0.25

Figure 3. Converted grayscale images of Figure 2 (a). The first row is computed using the detail loss estimate D in Equation 3 and the
second row is computed using DApp in Equation 9. Note that the two converted grayscale images are very similar when σr is small, and
the converted grayscale image obtained from the approximation method (using DApp) preserves the color contrast lost in the luminance
even when σr is relatively large.

the difference between image gradients of the input color
image I and the objective grayscale imageG that is the sum
of the residual image R and the luminance L. Specifically,
let x = [xr, xg, xb]

T denote the mapping function, then at
each pixel location p

R(p) = D(p)T · x. (4)

Let∇ denote the image gradient operator, and

A =


...

[∇Dr(p),∇Dg(p),∇Db(p)]
...

 (5)

denote the gradient of image D. Also let

m(p) = argmaxc∈{r,g,b}|Dc(p)|, (6)

denote the channel that has the largest amount of contrast
loss at pixel p and

B =


...

∇Im(p)(p)
...

 (7)

denote the gradient of image I at the corresponding channel,
the mapping function x is computed by solving the follow-
ing function

Ax +∇L = B ⇒ x = (ATA)−1AT (B −∇L), (8)

where ATA is a 3× 3 matrix and AT (B −∇L) is a 3× 1
vector. Equation 8 ensures the similarity of image gradients

between the converted grayscale image G = R+L and the
input color image I .

The joint bilateral filtered image IG obtained using the
converted grayscale image G as the guidance image is pre-
sented in Figure 2 (h). Apparently, IG in Figure 2 (h) can
be exactly the same as the bilateral filtered image II in (c)
only when all the contrast loss are successfully recovered
in the converted grayscale image G. However, this is nor-
mally impossible for natural images due to dimension re-
duction. Nevertheless, visual comparison of Figure 2 (d)
and (h) demonstrates great improvement in preserving the
contrast between the green dots and the two blue numbers
in the original color image in (a).

3.1. Fast Approximations

In practice, we use the original color image I to approx-
imate its bilateral filtered image II in Equation 3 to reduce
the computational complexity, which means that

DApp
c = Ic − ILc , c ∈ {r, g, b} (9)

is used as the estimate of detail lost D.
As an edge-preserving filter, the bilateral filtered image

II is very close to I when σr is small. In this paper, we
use the peak signal-to-noise ratio (PSNR) to measure the
similarity between image I and II:

PSNR = 10 log10(
h · w∑

p ||Ip − IIp||2
), (10)

where h and w are the height and width of the images. Fig-
ure 4 presents the PSNR values computed from 24 tested
images provided by [4] and the corresponding bilateral fil-
tered image II obtained using different σr parameters. The



Figure 4. PSNR values computed from the 24 tested images and
the bilateral filtered images obtained with σr ∈ [0.01, 0.20].

pink solid curve in Figure 4 is the mean/average PSNR val-
ues computed from all the tested images, and the green and
blue curves are the maximum and minimum PSNR values,
respectively. As can be seen, the mean PSNR value is larger
than 40 dB when σr ≤ 0.03, thus there is almost no visible
difference between the two images according to [20] and it
will be safe to use the original color image I to approximate
the bilateral filtered image II in Equation 3. The converted
grayscale images obtained with σr = 0.03 to 0.25 are pre-
sented in Figure 3. From top to bottom are the exact and
the approximated results obtained from DApp, respectively.
Note that when σr = 0.03 (see the 1st column in Figure 3),
the approximated grayscale image is very close to the ex-
act one. Also, when σr is relatively large (e.g., σr = 0.15,
the 4th column in Figure 3), the assumption that the input
image I is very similar to its bilateral filtered image II is
violated. However the converted grayscale image obtained
from the approximation method still correctly preserves the
color contrast lost in the luminance. If we change IL to II

in Equation 9, the original image I is separated into two
layers according to [9], II will be the base layer encoding
large-scale variations and DApp

c is the detail layer. Now
change II back to IL, then DApp computed from Equation
9 contains the high-contrast details of the color image lost in
the luminance, thus DApp is a robust estimate of the detail
lost. As a result, the grayscale image converted using DApp

will also effectively reflect the detail loss in the luminance.

4. Experiments
In this section we conduct comparison experiments for

numerical and perceptual evaluation on public and real-
world dataset. Also temporal evaluation is conducted by
representing video performance compared with other meth-
ods.

4.1. Numerical Evaluation

We evaluate the proposed method using the 24 tested im-
ages provided by [4]. The color contrast preserving ratio
(CCPR) proposed in [13] is adopted in this paper for numer-
ical evaluation. The average CCPR values obtained from

Figure 5. Quantitative evaluation using color contrast preserving
ratio (CCPR). As can be seen, our method (red solid curve) out-
performs all the others on standard test suite.

Table 1. Computational cost evaluation of different methods. We
use a 1280× 720 color image as input and obtain the time cost of
each state-of-the-art method.

Methods [12] [16] [13] [14] Ours

Runtime (Sec) 1.224 3.000 2.048 0.035 0.036

different conversion methods are presented in Figure 5. The
same parameter setting (σs=2 and σr=0.15) is used in all the
experiments presented in this section, and the CCPR values
were computed using the source code provided by the au-
thors of [13]. As can be seen, the proposed method is the
top performer (the red solid curve).

The computational cost performance is shown in Table
1 where we use a 1280 × 720 color image as input. Ta-
ble 1 indicates the proposed method is comparable to the
currently fastest method [14]. The computational time of
the proposed method is linearly proportional to the number
of pixels in the image. This real-time performance enables
online high resolution decolorization.

4.2. Perceptual Evaluation

Visual evaluation is presented in Figure 6 and 7. Fig-
ure 6 visually compares the recent color-to-grayscale con-
version methods with the proposed method using images
containing large amount of isoluminant changes. Figure 6
(b) shows that most of the details in the color images in (a)
are lost in the luminance. The loss is correctly estimated
in the proposed residual images in (h) and is successfully
recovered in the converted grayscale images in (i). Figure
7 presents visual comparison using natural images where
most of the color contrast is preserved in the luminance in
Figure 7 (b). In this case, the residual images in Figure 7 (h)
may be relatively flat (and close to zero) and the converted
grayscale images in Figure 7 (i) are close to the luminance
images in Figure 7 (b). More conversion results of natural
images are presented in Figure 8. We compare our method
with recent techniques [13, 14]. For natural images, the re-
sults obtained using the proposed method perform favorably
against [13, 14] on average.



(a)Input (b)Luma (c)[1] (d)[11] (e)[12] (f)[16] (g)[13] (h)[14] (i)Residual (j)Ours

Figure 6. Color-to-grayscale conversion of images with isoluminant changes. Note that the details lost in the luminance in (b) is successfully
estimated in the residual image in (i) and recovered in the converted grayscale image in (j). The results are best viewed on high-resolution
displays.

(a)Input (b)Luma (c)[1] (d)[11] (e)[12] (f)[16] (g)[13] (h)[14] (i)Residual (j)Ours.

Figure 7. Color-to-grayscale conversion of natural images. Note that most of the color contrast is preserved in the luminance in (b), thus
the residual images in (i) may be relatively flat (e.g., 1st row of (i)) and the converted grayscale images in (j) are close to the luminance
images in (b). The results are best viewed on high-resolution displays.

4.3. Temporal evaluation

Besides images, another view of robust evaluation is
temporal coherence in video. If we convert sequential
frames to grayscale frames, the perception of altering in
adjacent frames should be in accordance with that in the
original frames. [12] proposed temporally coherent video
conversion, which already demonstrates weakly temporal
robustness of their original image decolorization method.
Unlike [12], the proposed method automatically preserves

the temporal coherence in a converted grayscale video as
shown in Figure 9 (d).

5. Conclusion
This paper presents a real-time decolorization method.

Color contrast lost in the luminance is estimated using bi-
lateral filtering and then linearly mapped to a grayscale im-
age named residual image. The sum of the residual im-
age and the luminance is the objective grayscale image



(a) Input (b) Luminance (c) [13] (c) [14] (d) Ours.
Figure 8. More results on natural images. The proposed method performs favorably against the recent techniques [13, 14].The results are
best viewed on high-resolution displays.

that preserves both the luminance information and the color
contrast. Quantitative evaluation on the standard dataset
demonstrates that the proposed method outperforms the ex-
isting decolorization methods in quality. Meanwhile it is
very robust in that it can be directly applied to convert ev-
ery frame during video decolorization. In addition, it can
deal with high resolution image in real time thus can better
meet current demand.
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