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Robust Piecewise-Constant Smoothing:
M -Smoother Revisited

Linchao Bao and Qingxiong Yang
http://www.cs.cityu.edu.hk/˜qiyang/

Abstract—A robust estimator, namely M -smoother, for
piecewise-constant smoothing is revisited in this paper.
Starting from its generalized formulation, we propose a
numerical scheme/framework for solving it via a series of
weighted-average filtering (e.g., box filtering, Gaussian fil-
tering, bilateral filtering, and guided filtering). Because of
the equivalence between M -smoother and local-histogram-
based filters (such as median filter and mode filter),
the proposed framework enables fast approximation of
histogram filters via a number of box filtering or Gaus-
sian filtering. In addition, high-quality piecewise-constant
smoothing can be achieved via a number of bilateral
filtering or guided filtering integrated in the proposed
framework. Experiments on depth map denoising show
the effectiveness of our framework.

Index Terms—Piecewise-constant smoothing, M -
smoother, Edge-preserving filter, Bilateral filter, Guided
filter

I. INTRODUCTION

Piecewise-constant smoothing serves as a funda-
mental tool in many image processing and low-level
vision tasks. Originating from different background,
a wide range of techniques are proposed to solve
the problem, including anisotropic diffusion [23],
bilateral filtering [26], robust estimation [5], etc.
Their relations have been widely discussed in the lit-
erature [3], [28], [1], [9], [19] to benefit each other.
For example, anisotropic diffusion is improved by
exploiting new “edge-stopping” functions based on
the well-studied influence functions from robust
statistics [3]. We in this paper focus on exploring the
reciprocity between robust estimation and weighted-
average filters.
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A binary executable demo with GUI that can reproduce most of
the results in the manuscript can be accessed here: http://www.cs.
cityu.edu.hk/∼qiyang/publications/m-smoother/.

Specifically, We show that a robust estimator –
the M -smoother [5] – can be reformulated as a
series of weighted-average filtering followed by a
winner-take-all operation. As a result, it can be
much more efficiently approximated utilizing exist-
ing fast filtering algorithms. More importantly, ex-
isting weighted-average based edge-preserving fil-
ters, such as bilateral filter, guided filter [11], and
cross-multi-point filter [16], can be largely “en-
hanced” to achieve high-quality piecewise-constant
smoothing when integrated into the framework with
well-studied robust loss functions.

The paper is organized as follows. In the next sec-
tion we briefly review the preliminaries of weighted-
average filters, local-histogram-based filters and M -
smoother (note that local-histogram-based filters are
closely related with M -smoother [19]). We present
our framework in Sec. III. Sec. IV provides more
discussion by exploiting the specific forms of the
proposed framework. Finally, Sec. V concludes the
paper.

II. PRELIMINARIES AND NOTIONS

A. Weighted-average Filters

Throughout this paper, we use F(·) to denote
a filter operation performed on an image, that is,
assuming I to be an input image and J the filtered
image,

J = F(I). (1)

A wide range of weighted-average filters can be
expressed as, denoting Ip the color/intensity value
at pixel p and Jp the filtered value at pixel p,

Jp =
∑
q∈Ωp

w(T )
pq · Iq, (2)

where Ωp is the neighborhood of pixel p and the
weighting function w

(T )
pq may or may not depend

on a guidance image T . For example, when the

ar
X

iv
:1

41
0.

75
80

v1
  [

cs
.C

V
] 

 2
8 

O
ct

 2
01

4

http://www.cs.cityu.edu.hk/~qiyang/
http://www.cs.cityu.edu.hk/~qiyang/publications/m-smoother/
http://www.cs.cityu.edu.hk/~qiyang/publications/m-smoother/


2

weighting function is a normalized Gaussian func-
tion depending on spatial distance between p and
q, the formulation is a Gaussian filter. When the
color/intensity value of pixel p and q in guidance
image T is taken into account, the formulation
becomes the bilateral filter1 [26]. See Table I for
the weighted-average filters considered in this paper.
Note that although the weighting function of the
guided filter [11] seems a little complicated, it actu-
ally has a rather efficient algorithm (the complexity
is about 6 times as much as that of a box filtering
for single channel image).

TABLE I
WEIGHTED-AVERAGE FILTERS

Weighting function Filter

w
(T )
pq = 1

Wp
Box (BF)†

w
(T )
pq = 1

Wp
Gσ(‖p− q‖) Gaussian (GF)†

w
(T )
pq = 1

Wp
Gσs(‖p− q‖)Gσr (|Tp − Tq|) Bilateral (BLF)†

w
(T )
pq = 1

|ω|2
∑

k:(p,q)∈ωk
(1 +

(Tp−µk)(Tq−µk)
σ2
k
+ε

) Guided (GDF)‡

†: Notion Wp is normalization factor (summing all weights for pixel p),
G(·) is the Gaussian function.
‡: Notion ωk denotes each window (with radius r and |ω| pixels) that

covers both pixel p and q, whose mean and variance are µk and σk ,
respectively. ε is a parameter.

The parameters for the four filters are as follows:
box filter is controlled by the radius r of the
box window; Gaussian filter is controlled by the
parameter σ in Gaussian function; bilateral filter
is controlled by parameter σs of spatial kernel and
parameter σr of range kernel; guided filter is con-
trolled by r and ε. The parameter “correspondence”
between bilateral filter and guided filter is suggested
in [11]: σs ↔ r and σ2

r ↔ ε. For a unified
discussion, we further extend the “correspondence”
to box filter and Gaussian filter: we also use σs to
denote the parameter σ in Gaussian filter and control
the parameter r in box filter2. In this way, we can
use the two parameters σs and σr to discuss all the
filters, following the convention of the bilateral filter
[22] (σs is measured by pixel number and σr is a
real number between 0 and 1 indicating a fraction
of the whole intensity range R).

1Bilateral filter is also referred to as σ-filter in [5] or nonlinear
Gaussian filter in [28].

2To achieve the same amount of smoothing as Gaussian filter, the
r in box filter is calculated by r = b

√
2σsc empirically in our

experiments [12] (it can be verified by experimental comparison using
PSNR between box filtered image and Gaussian filtered image).

B. Local-histogram-based Filters

A family of local-histogram-based filters [27],
[15] (e.g., median filter and mode filters) are to
replace the color/intensity of each pixel with the
color/intensity of neighboring majority pixels (e.g.,
using some certain robust statistics drawn out from
local histogram). For example, median filtering is to
replace each pixel value with the median of neigh-
boring pixel values (if Gaussian weighted neighbor-
hood is used, it is called isotropic median filtering
[15]). The closest-mode filtering [15] (also referred
to as local mode filtering in [27]) replaces each
pixel with its closest mode, and the dominant-mode
filtering [15] (similar to the global mode filtering
in [27]) instead uses the mode having the largest
population. Although such kind of filters can smooth
out high contrast, fine-scale details, they often face
a problem of serious deviation from the original
edges (especially at corners), since local histogram
completely ignores image geometric structures.

For convenience, in the rest of this paper, we use
the term “local mode filter” and “global mode filter”
in [27] to refer to filters whose local histograms are
constructed within hard spatial windows, and use
the term “closest-mode filter” and “dominant-mode
filter” in [15] to refer to filters whose local his-
tograms are constructed within Gaussian weighted
soft spatial windows.

C. M -Smoother

From the statistical point of view, the simplest,
non-robust estimation of the underlying image sig-
nal contaminated by zero-mean Gaussian noise is
to estimate the intensity value of each pixel by
minimizing the sum of squared residual errors (L2

norm) within local window

Jp = argmin
θ

∑
q∈Ωp

(θ − Iq)2. (3)

Solving the optimization problem yields exactly
the box filter. The problem of such least-squares
estimation is that it is very sensitive to outliers and
thus pixels at the two sides of an edge will affect
each other. As a result, edges will get blurred.

In order to increase robustness and reject outliers,
the quadratic function in the above formulation need
to be replaced with more tolerant function that
gives less penalty to outliers. For example, using
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the absolute error function instead of the quadratic
function, we obtain (L1 norm)

Jp = argmin
θ

∑
q∈Ωp

|θ − Iq|, (4)

whose solution yields exactly the median filter [28].
More generally, the above formulation can be

extended to the M -smoother [5]3 (originated from
the M -estimator in robust statistics [13], [10])

Jp = argmin
θ

∑
q∈Ωp

ρ(θ − Iq), (5)

where ρ(·) is a loss function (also referred to as
ρ-function or error norm). For robustness, the loss
function should not grow too rapidly, hence lessen-
ing the influence of outliers. Its derivative function
is a good tool for studying the influence of outliers,
which is often referred to as influence function or
ψ-function in robust statistics [13], [10]. In order
to preserve sharp edges in images, a redescending
influence function (|ψ(x)| → 0 as |x| → ∞) is
often preferred [5], [3] (we hereafter refer to the loss
function whose influence function is redescending
as redescending-influence loss function). Table II
shows several pairs of the loss function and the
corresponding influence function. More robust loss
functions can be found in [2]. Note the parameter
σ in Table II is used to control the influence scale
[3]. In this paper, we associate the scale parameter
σ in loss function with the range parameter σr in
weighted-average filters (let σ = σr ·R), as basically
both of them are to control the “robustness” [8].

Additionally, the M -smoother can be extended
[5] to take into account spatial weights in local
window. The formulation further becomes

Jp = argmin
θ

∑
q∈Ωp

ρ(θ − Iq) ·G(‖p− q‖), (6)

where G(·) is a Gaussian weighting function.
The strategy of employing a robust loss function

to reject outliers is analogous to the range weighting
function in bilateral filter [28], [8]. Durand and
Dorsey [8] noticed this and propose to improve
bilateral filter by replacing the Gaussian weighting
function with a superior function – Tukey’s biweight
– whose influence function is more conform to

3The M -smoother in [5] means to find local minima that is closest
to the original input pixel value when minimizing the objective
function. We in this paper do not mean to find local minima, but
rather to find the global minima of the objective function.

TABLE II
LOSS FUNCTION AND INFLUENCE FUNCTION

Loss function† Influence function†

L1 norm:
ρ(x) = |x|

Truncated L1 norm:

ρ(x, σ) =

{
|x|, if |x| ≤ σ
σ, otherwise

Negative Gauss:

ρ(x, σ) = 1− e
− x2

(0.64σ)2

Tukey’s biweight: ρ(x, σ) ={
x2

σ2 − x4

σ4 + x6

3σ6 , if |x| ≤ σ
1
3

, otherwise

Geman-Reynolds:
ρ(x, σ) = −σ

σ+|x|

†: Influence function is the derivative of loss function. Note that the last four
loss functions are redescending-influence loss functions (RILF).

the redescending principle. Note that although the
correspondence between M -smoother and bilateral
filter can be established in this way, their output are
usually much different from each other, since the bi-
lateral filter can only be viewed as one step towards
finding local minima of the objective function of M -
smoother using iterative methods [28], [19]. Simply
increasing iterations of bilateral filtering still cannot
correctly lead to the output of M -smoother, as the
image is transformed after each step [28].

Actually, the global minima of M -smoother with
a negative Gaussian loss function is similar to that
of a global mode filter [27] or dominant-mode filter,
and the local minima of M -smoother corresponds
to the local mode filter or closest-mode filter [15].
Please refer to [19] for a detailed discussion.

III. OUR FILTERING FRAMEWORK

In this section, we generalize the M -smoother
and propose a numerical scheme to solve it via a
series of weighted-average filtering. The numerical
scheme is indeed our proposed filtering framework,
the specific forms of which will be exploited in next
section.
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A. Generalized M -Smoother
We extend the weighting function of M -smoother

in Eq. (6) into a more general form:

Jp = argmin
θ

∑
q∈Ωp

ρ(θ − Iq) · w(T )
pq , (7)

where the w(T )
pq is the weight of pixel q contribut-

ing to p and T can be either a guidance image
(see Table I) or the input image I itself. Note
that our formulation actually combines the implicit
piecewise-constant model (from robust estimator)
and the explicit weighting scheme (from weighted-
average filters). If the weighting function is the
edge-preserving weighting from bilateral filter or
guided filter, our formulation can achieve better
edge preservation in piecewise-constant smoothing
than traditional M -smoother due to the explicit
weighting scheme (see Sec. IV-B for details).

B. Solve via a Filtering Framework
Let Θ denote the set of all possible output pixel

values of the smoother, for a given θ ∈ Θ, we
define D(θ) as a cost image where each pixel p
is computed from input image I as follows

[D(θ)]p = ρ(θ − Ip). (8)

Then we can reformulate Eq. (7) into

Jp = argmin
θ∈Θ

[F (D(θ))]p, (9)

where F(·) is a weighted-average filter (see Eq. (2)).
Assuming set Θ is finite, the formulation essentially
means the filtering on all possible cost images
{D(θ) | θ ∈ Θ} is first performed and then an
argmin operation at each pixel p is individually
applied according to the filtered results at p. The
process is known as cost-volume filtering framework
[24] in the context of discrete labeling problem like
stereo matching.

The key insight of the above reformulation is
that the filtering on cost image allows us to apply
fast filtering algorithms for efficient computation of
the generalized M -smoother. With the constant-time
complexity (per input pixel) filtering algorithms4

[6], [7], [29], [4], [11], we are able to compute
the weighted averaging in Eq. (7) in constant time

4In the literature, “constant time (per pixel)” is also referred to
as “linear time (in pixel number)”. We follow the way of “constant
time” in [4].

Algorithm 1 Approximate Algorithm
Input: image I , number of samples n, filter F .
Output: smoothed image J .
———————Algorithm Start———————
calculate evenly distributed samples Θ̂
for each sample θ in Θ̂ do

(1) compute cost image D(θ) = ρ(θ − I);
(2) filtering the cost image to get F(D(θ));

end for
for each pixel p do

(1) compute Ĵp using Eq. (10);
(2) compute output Jp using Eq. (11);

end for
———————-Algorithm End———————-

regardless of the size of the neighborhood Ωp at
each pixel p. Note the argmin step is performed
at each pixel individually, thus its computation can
be ignored comparing to the filtering step. Let |Θ|
denote the size of set Θ, the computation of Eq. (9)
is mainly the |Θ| filtering on cost images.

We in this paper mainly target on 8-bit image,
which is the most commonly used format in practice
(for 24-bit or 32-bit color image, we separately
process each of the RGB channels). Thus set Θ
contains 256 integers in [0, 255], i.e., |Θ| = 256.
We will show how to further reduce the number of
filtering in next section.

C. Approximate Algorithm

An effective strategy to reduce the number of
filtering required in the framework is through uni-
formly sampling the set Θ. The idea is that, filtering
is only performed for samples rather than all pos-
sible values in Θ, and the output for each pixel is
approximated using the samples according to the
filtered results (see Algorithm 1). Specifically, let
the sampling set be Θ̂, which has n samples evenly
distributed in Θ, we first find out the best θ among
these samples at each pixel p

Ĵp = argmin
θ∈Θ̂

[F(D(θ))]p. (10)

Since the following operation is performed at each
pixel p individually, for simplicity, we use θ0 to
denote Ĵp and f(θ) to denote the filtered pixel value
[F(D(θ))]p for a given θ. For pixel p, suppose θ+

and θ− are the two closest samples near θ0 in Θ̂, then
the output value of pixel p can be approximated by
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(a) σr = 0.05
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(b) σr = 0.1
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(c) σr = 0.2

Fig. 1. PSNR accuracy of the approximate algorithm. The loss functions are (from top to bottom): L1 norm, truncated L1 norm, negative
Gauss, Tukey’s biweight, and Geman-Reynolds. It is suggested that PSNR value above 40dB often corresponds to almost invisible differences
between two images [21].
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fitting a parabolic curve [30] using the three samples
and their corresponding filtered values,

Jp = θ0 −
(θ+ − θ−)(f(θ+)− f(θ−))

4(f(θ+) + f(θ−)− 2f(θ0))
. (11)

Note that the parabolic fitting is a closed-form ap-
proximation by assuming the cost function follows
a parabolic curve near the bottom (near Ĵp). The
actual cost function cannot be analytically solved
without considering the pixel distribution of each
pixel’s neighborhood due to the data-dependent av-
erage (see Appendix for the derivation). Although
a more precise way to solve it is to perform fur-
ther sampling and filtering near Ĵp, we find that
the closed-form approximation is much faster and
usually accurate enough in practice. We will show
this in next section.

D. Experimental Validation

As commonly adopted in developing approximate
algorithms for bilateral filter [21], we also use
the peak signal-to-noise ratio (PSNR) metric to
measure the approximate accuracy. Higher PSNR
value between the approximate and exact results
means more accurate approximation (it is suggested
that PSNR value above 40dB often corresponds to
almost invisible differences between two images
[21]). We test the approximate algorithm for four
filters listed in Table I and five loss functions listed
in Table II (in total 20 pairs of combination) in the
following sampled parameter settings, respectively:
σs ∈ {2, 4, 8, 16}, σr ∈ {0.05, 0.1, 0.2, 0.4}, and
n ∈ {8, 16, 32, 64, 128}. The 8 test images are
from Paris’s bilateral filtering dataset [20] (color
images are converted to grayscale): dome, dragon,
greekdome, housecorner, polin, swamp, tulip, and
turtle. The reference image for calculating PSNR
is obtained from Eq. (9) by enumerating all possi-
ble output values within Θ (i.e., integer values in
[0, 255] for 8-bit image).

According to our observation, we find that the
PSNR value is not sensitive to the spatial parameter
σs. Thus we only plot the PSNR results according to
different σr for each loss function and filter in Fig.
1. That is, for a specific pair of loss function and
filter, PSNR from different images with different
σs but a same σr are averaged together for the
plot (results for σr = 0.4 are not shown since the
PSNR are commonly high). The results show that

TABLE III
APPROXIMATING HISTOGRAM FILTERS

F is box filter F is Gaussian filter
L1 norm median filter isotropic median filter [15]

RILF† global mode filter‡ [27] dominant-mode filter‡ [15]

†: RILF stands for redescending-influence loss functions.

‡: The global mode filter uses hard spatial window to construct local
histogram, while the dominant-mode filter uses Gaussian weighted
window to construct local histogram.

Timing (per mega-pixel) with n = 16 (RILF is truncated L1 norm):

filter CPU† GPU†

type ours [15] ours [15]
median 150 ms – 5 ms –

isotropic median 230 ms 833 ms 6 ms 166 ms
global mode 150 ms – 5 ms –

dominant-mode 230 ms 2777 ms 6 ms 332 ms

†: The timing of [15] is reproduced from the paper. It is reported on
Intel 2.83 GHz Xeon E5440 CPU and NVIDIA Quadro FX 770M
GPU. Note that our algorithm for dominant-mode filter only needs
half as many Gaussian filtering as [15] and is much simpler to
implement (the algorithm in [15] requires 2n Gaussian filtering for
computing integrals and derivatives of histogram).

(a) Input (b) Ours (F is BF) (c) Ours (F is GF)

Fig. 2. Example result of our approximate global mode filter (F is
box filter) and dominant-mode filter (F is Gaussian filter).

the approximate accuracy for each loss function is
sensitive to σr (except the L1 norm which does
not have a scale parameter). Commonly speaking,
the larger value of σr, the smaller n required for
high accuracy (PSNR above 40dB). For example,
for σr = 0.05 (first row), n = 32 can commonly
make the PSNR above 40dB, while for σr = 0.1
(second row), n = 16 is often enough.

The above experimental results imply that in
practice we can safely use a n much smaller than
256 (for 8-bit image). Generally, for situations
where parameter σr is not too small (e.g., ≥ 0.1),
we can use n = 16 to get accurately approximated
results (n can be further reduced for larger σr).

IV. EXPLOITING SPECIFIC FORMS

We in this section demonstrate our contribu-
tion by exploiting the specific forms of the gen-
eralized M -smoother and our filtering framework.
Since during our previous experiments, we find
that the smoothing effects of the four redescending-
influence loss functions are actually visually similar
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(a) BLF (σr = 0.1) (b) BLF (σr = 0.2) (c) BLF with L1 norm (d) BLF with truncated L1

(e) GDF (σr = 0.1) (f) GDF (σr = 0.2) (g) GDF with L1 norm (h) GDF with truncated L1

Fig. 3. Piecewise-constant smoothing with proposed framework. Spatial parameter is σs = 3 for all results. The σr in our framework is 0.2.
The bilateral filter and guided filter with σr = 0.1 cannot smooth out fine details (see left close-up window), while with larger parameter
σr = 0.2 they may blur major edges (see right close-up window).

(a) Input (b) Ours (F is GF) (c) Ours (F is GDF)

Fig. 4. Comparison between Gaussian filter and guided filter as
F (with truncated L1 norm, σs = 3, σr = 0.2). The comparison
shows that, when F is an edge-preserving filter (GDF), the framework
can better preserve edges, while on the other hand, when F is a
linear filter (GF), it can achieve stronger smoothing but may cause
deviations from input edges.

to each other (but different from the L1 norm).
We will use one of the last four loss functions
as a representative when demonstrating the filtering
effects in this section.

(a) Input (b) BLF (c) GDF

(d) Input (visualized) (e) Ours (F is BLF) (f) Ours (F is GDF)

Fig. 5. Smoothing of a synthetic grayscale noisy image. The colored
visualized display is shown for clarity. The parameters used in BLF
and GDF are σs = 10, σr = 0.15. The loss function in our
framework is truncated L1 norm.
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(a) Clean RGB image (b) Ground truth (c) With noise(74.6%) (d) Joint BLF (13.0%) (e) Ours (4.29%)

(f) Clean RGB image (g) Ground truth (h) With noise(73.2%) (i) Joint BLF (13.3%) (j) Ours (3.45%)

Fig. 6. Joint filtering for disparity map denoising. From left to right: clean RGB images, ground-truth disparity maps, disparity maps
deteriorated with Gaussian noise, denoised disparity maps using joint bilateral filter, denoised disparity maps using our enhanced joint
bilateral filter with truncated L1 norm as loss function. The parameters are σs = 5, σr = 0.1. The percentage shown under subfigures is
the the percentage of bad estimated pixels: we adopted the methodology used in [25]: if the disparity error of a pixel is larger than 1, it is
treated as a bad pixel. Notice that denoising on natural/textured images [31] or based on complicated noise model [14] is out of the scope
of this paper.

A. Fast Algorithms for Histogram Filters

As discussed in Sec. II-C, traditional M -smoother
is closely related to histogram filters. Thus the
proposed framework with F being box filter or
Gaussian filter can serve as fast approximation for
histogram filters. Table III shows the correspon-
dence between proposed framework and histogram
filters.

Note that both box filter and Gaussian filter can
be implemented in constant time complexity (per
input pixel) [6], [7]. In our implementation, box fil-
ter takes 5 milliseconds per mega-pixel (ms/Mp) on
CPU and 0.25 ms/Mp on GPU, while the Gaussian
filter takes 12 ms/Mp on CPU and 0.3 ms/Mp on

GPU5. The running time of our approximated local-
histogram-based filters is shown in Table III. Fig. 2
shows an example result of our approximate global
mode filter and dominant-mode filter.

B. Piecewise-constant Smoothing

When the operator F in Eq. (9) is bilateral filter
or guided filter, the proposed framework is actually
a weighted median filter [17] (with L1 norm) or
a weighted mode filter [18] (with a redescending-
influence loss function). The framework plays a
role for “enhancing” the edge-preserving ability of
F to achieve piecewise-constant smoothing, due to

5The CPU running time is obtained on Intel 3.4 GHz Core i7-3770
CPU with 8GB RAM, using single thread implementation. The GPU
running time is obtained on a NVIDIA GTX 780 graphics card, using
CUDA implementation.
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(a) Input RGB (b) Input depth (c) GDF (d) Ours (F is GDF)

Fig. 7. Joint filtering on depth map obtained by Microsoft Kinect camera. The parameters are σs = 10, σr = 0.1. The loss function in
our framework is truncated L1 norm. The invalid regions in the depth map (black holes) can be neatly fixed by our enhanced joint filtering
(the value of invalid pixels is treated as zero during the filtering).

the derivation of the M -smoother from piecewise-
constant model [5]. Fig. 5 shows such an example
on a synthetic image. Fig. 3 shows an example on a
natural image. Note that although the loss function
in our framework works like the range weighting
function in bilateral filter, yet adding another range
weighting kernel into bilateral filter (i.e., chang-
ing σr in Gaussian range kernel) cannot yield our
smoother. Also, performing bilateral filtering in an
iterative manner cannot achieve the same results as
our smoother (as discussed in Sec. II-C). Compared
with the histogram filters (e.g., when F is box
filter or Gaussian filter in our framework), the new
smoother can better preserve edges (recall that lo-
cal histogram completely ignores the color/intensity
value of center pixel). Fig. 4 gives an illustration.

Additionally, both the (joint) bilateral filtering
and guided filtering can use another image [18],
rather than the input image itself, as guidance im-
age. This gives the filtering more flexibility (here-
after referred to as joint filtering) and makes it
especially suitable for depth image restoration. For
example, the enhanced joint filtering can be em-
ployed to reduce the noise of depth image, which
can be acquired by commercial cameras but is
commonly noisy, using clean RGB image that can
be simultaneously acquired with depth image as
guidance image. Fig. 6 shows two experimental
results of the joint bilateral filtering on disparity
maps (disparity is inversely proportional to depth).
The numerical comparison shows the effectiveness
of our approach. Fig. 7 shows a real world example
of the denoising on depth image obtained by Mi-
crosoft Kinect camera. Note that the invalid regions
in the original depth map (black holes) can be neatly
fixed by our approach. Similarly, the enhanced joint
filtering can also serve as a tool for refining disparity

maps produced by existing stereo matching algo-
rithms [25]. Fig. 8 shows a quantitative comparison
of the disparity map refinement on the Middlebury
benchmark [25] (we use three basic and efficient
stereo matching algorithms to produce low-quality
disparity maps), using original joint filtering and our
enhanced joint filtering, respectively. Compared to
the original joint filtering, our approach can produce
cleaner and sharper disparity maps. With a CUDA
implementation, our enhanced joint filtering can
achieve real-time performance on GPU (e.g., the
enhanced guided filtering with n = 16 takes about
30 ms/Mp on our GPU).

V. CONCLUDING REMARKS

We have presented a filtering framework for
achieve piecewise-constant smoothing. The pro-
posed framework is derived by solving a generalized
M -smoother and can be implemented very effi-
ciently on modern many-core processors utilizing
parallelism. We demonstrate the effectiveness of
the proposed framework for fast approximation of
local-histogram-based filters and enhancing existing
edge-preserving filters. An unsolved problem is how
to further reduce the number of filtering required
in the framework, for example, by automatically
selecting the sampling intensity levels to minimize
the quantization error. We intend to investigate this
problem in the future.

APPENDIX
DERIVATION OF PARABOLIC FITTING

APPROXIMATION

Let us first consider the simplest case Eq. (4) (box
filter with L1 norm loss function). Since neighboring
pixels tend to be similar to each other, we assume
the pixel values near p follow a uniform distribution
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Fig. 8. Quantitative comparison of disparity map refinement by original joint filtering and our enhanced joint filtering (accuracy is measured
by percentage of bad pixels [25]). The three stereo matching algorithms, i.e., Sum of Absolute Differences (SAD), Normalized Correlation
(NC), Census Transform, can be computed very efficiently but the quality of the produced disparity map is low. Filtering the disparity map
using joint bilateral filter or guided filter with input RGB image as guidance image, the quality of disparity map can not be improved. By
contrast, our enhanced joint bilateral filtering or guided filtering (with truncated L1 norm loss function) can commonly make the quality of
the disparity map improved. An example of the visual comparison is provided in Fig. 9.

(a) Original disparity maps (b) JBF (σs=10,σr=0.1) (c) Ours (F is JBF) (d) GDF (σs=10,σr=0.1) (e) Ours (F is GDF)

Fig. 9. Visual comparison of disparity map refinement for Venus dataset from Middlebury benchmark [25]. The three rows correspond to
the three algorithms in Fig. 8. Loss function in our framework is truncated L1 norm.

between a and b (0 < a < b < 255). Then the cost
function of Eq. (4) can be rewritten as an integral

E(θ) =
∑
q∈Ωp

|θ − Iq| ≈
∫ b

a

|θ − x|dx

=


1
2
[(θ − b)2 − (θ − a)2)], if θ < a

1
2
[(θ − a)2 + (θ − b)2)], if a 6 θ 6 b

1
2
[(θ − a)2 − (θ − b)2)], if θ > b

The function is a “cup-shaped” continuous function,
with two linear segments in the ends and a quadratic

segment in the middle. Thus in our approximate
algorithm, we can fit a parabola near the bottom of
the “cup-shaped” function to find the minima. The
derivation can be generalized to other loss functions
in Table II (although their resulting cost function
will not be parabolic curve, in our algorithm we
use parabolic fitting to approximate all the cases
for simplicity).

Notice that the above derivation is based on a
much simplified problem (uniform distributed pixel
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values near p). In fact, because the cost function
is data-dependent (depending on the neighboring
pixels near p), the actual cost function cannot
be analytically solved. Besides, the complicated
weighting schemes other than box filter (see Table
I) will add more complexity to the problem. Thus
we conducted a thorough experimental validation
in Section III-D. The experiments show that the
approximate algorithm works well in practice.
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