
1

Tree Filtering: Efficient Structure-Preserving
Smoothing With a Minimum Spanning Tree

Linchao Bao, Yibing Song, Qingxiong Yang, Member, IEEE, Hao Yuan, and Gang Wang, Member, IEEE

Abstract—We present a new efficient edge-preserving filter –
“tree filter” – to achieve strong image smoothing. The proposed
filter can smooth out high-contrast details while preserving major
edges, which is not achievable for bilateral-filter-like techniques.
Tree filter is a weighted-average filter, whose kernel is derived by
viewing pixel affinity in a probabilistic framework simultaneously
considering pixel spatial distance, color/intensity difference, as
well as connectedness. Pixel connectedness is acquired by treating
pixels as nodes in a minimum spanning tree (MST) extracted
from the image. The fact that a MST makes all image pixels
connected through the tree endues the filter with the power
to smooth out high-contrast, fine-scale details while preserving
major image structures, since pixels in small isolated region
will be closely connected to surrounding majority pixels through
the tree, while pixels inside large homogeneous region will be
automatically dragged away from pixels outside the region. The
tree filter can be separated into two other filters, both of which
turn out to have fast algorithms. We also propose an efficient
linear time MST extraction algorithm to further improve the
whole filtering speed. The algorithms give tree filter a great
advantage in low computational complexity (linear to number
of image pixels) and fast speed: it can process a 1-megapixel
8-bit image at around 0.25 seconds on an Intel 3.4GHz Core
i7 CPU (including the construction of MST). The proposed tree
filter is demonstrated on a variety of applications.

Index Terms—bilateral filtering, collaborative filtering, edge-
preserving smoothing, high-contrast detail smoothing, joint fil-
tering, minimum spanning tree, structure-preserving smoothing,
tree filtering.

I. INTRODUCTION

Edge-preserving image smoothing has been serving as the
foundation for many computer vision and graphics applica-
tions. Real-world natural images are often filled with various
trivial details and textures, which may degrade the perfor-
mance of many computer vision and graphics algorithms in-
cluding, for example, low-level image analysis (e.g., edge de-
tection, image segmentation), image abstraction/vectorization
for visual effects or compact storage, content-aware image
editing, etc. Serving as the pre-processing or key intermediate

Manuscript received January 26, 2013; revised July 3, 2013 and August 29,
2013; accepted November 5, 2013. This work was supported by a GRF grant
from the Research Grants Council of Hong Kong under Grant U 122212. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Sina Farsiu.

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

L. Bao, Y. Song, and Q. Yang are with the Department of Computer
Science at City University of Hong Kong, Hong Kong (e-mail: {linchaobao,
dynamicstevenson}@gmail.com; qiyang@cityu.edu.hk).

H. Yuan is with the BOPU Technologies, Shenzhen, China (e-mail:
hao@bopufund.com).

G. Wang is with the School of Electrical and Electronics Engineering,
Nanyang Technological University, Singapore and Advanced Digital Science
Center, Singapore (e-mail: wanggang@ntu.edu.sg).

step for these algorithms, edge-preserving smoothing is to
remove trivial details (smoothing) while respecting major
image structures (edge-preserving).

Most of the existing edge-preserving smoothing operators
distinguish details from major image structures based on pixel
color/intensity differences. One of the most representative
operator is the well-known bilateral filter [1], which averages
nearby similar pixels to filter each pixel. Other similar oper-
ators include anisotropic diffusion [2], weighted least square
(WLS) filter [3], edge-aware wavelets [4], guided filter [5],
geodesic smoothing [6], [7], domain transform filter [8], local
Laplacian filter [9], L0 smoothing [10], etc. Although the
filtering responses of these operators differ from each other,
the common behavior of such kind of operators is to smooth
out low-contrast details from input images as they typically
only use pixel color/intensity contrasts (or image gradients)
to distinguish details from major image structures. We refer
these operators as bilateral-filter-like techniques in this paper.

Bilateral-filter-like techniques find their successful places
in many applications, especially where low-contrast details
need to be enhanced [11], [3], [12]. For other applications
where high-contrast trivial details need to be smoothed (one
example is the scene simplification task), however, such kind
of techniques are often not wise choices.

A family of local-histogram-based filters [13], [14], [15]
(e.g., median filter and local mode filters) address this problem
by analyzing local pixel population within the sliding window,
whose main idea is to replace the color/intensity of each
pixel with the color/intensity of neighboring majority pixels
(e.g., using some certain robust statistics drawn out from
local histogram). Such kind of operators can smooth out high-
contrast, fine-scale details, but they often face a problem of
serious deviation from the original sharp edges (especially
at corners) since local histogram completely ignores image
geometric structures.

Subr et al. [16] explicitly point out that details should be
identified with respect to spatial scale, regardless of their
color/intensity contrasts. They propose to smooth out high-
contrast, fine-scale oscillations by constructing local extremal
envelopes. Recently, Xu et al. [17] propose to extract major
structures from textured images based on Relative Total Varia-
tion (RTV) in an optimization framework. Su et al. [18] try to
combine the strong smoothing ability of traditional low-pass
filter and the edge-preserving ability of bilateral filter, in order
to smooth out high-contrast textures. All these novel methods
intend to address the problem of smoothing out details with
high contrasts while respecting major image structures, but
they all require either solving large linear systems or more
complex optimization techniques, which prevent them from

2

serving as an efficient filtering tool in many applications.
Detailed analysis and comparison are provided in Sec. II-A2
and Sec. V-A, respectively.

We hereby reexamine the definition of the notion “detail”
before we present the tree filter. We agree with Subr et al.
[16] that “details” should be distinguished from major image
structures by their spatial scales, rather than by their contrasts.
However, we notice that a reliable method for distinguishing
between different “spatial scales” in 2D discrete signal space
worth further discussion. Specifically, unlike 1D signal space
in which it is easy to identify fine-scale details, in 2D signal
space, simple method for identifying fine-scale details (e.g.,
using a sliding window) will fail since slender (thin and long,
see Fig. 1(b)) structures might be lost. We argue that if a
connected component in an image is large enough (even if
it is slender), it should be considered as an important image
structure thus need to be preserved (see Fig. 1). (Note that the
discussion for accurate definition of “connected component” is
out of the scope of this paper, and we only use the concept of
“connected component” to refer to homogeneous image region
containing pixels with similar colors/intensities.)

(a) Small region (b) Slender region (c) Large region

Fig. 1. Three cases of homogenous image region (red square stands for a
sliding window). It is easy to identify region (a) as detail to be smoothed and
(c) as major structure to be preserved. For region (b), simple approach that
only looks at a local window of each pixel will identify it as detail part by
part. We argue that region (b) is large enough as a whole to be identified as
major structure and thus should be preserved.

In this paper, we present a new edge-preserving smoothing
filter – “tree filter” – for smoothing out high-contrast details
while preserving major image structures. Compared with pre-
vious complex operators for smoothing high-contrast details,
tree filter is a simpler yet effective weighted-average filter
and can be computed much more efficiently using proposed
algorithms. It utilizes a minimum spanning tree (MST) ex-
tracted from input image to determine the weights of the filter
kernel. The MST enables a non-local fashion of distinguishing
small connected components (details) from large connected
components (major structures), thus tree filter is able to deal
with the slender region case in Fig. 1(b). Moreover, tree filter
can be separated into two other filters, both of which turn out
to have fast algorithms. We also propose an efficient linear
time MST extraction algorithm to further improve the whole
filtering speed. The algorithms give tree filter a great advantage
in low computational complexity (linear to number of image
pixels) and fast speed: it can process a 1-megapixel 8-bit image
at around 0.25 seconds on an Intel 3.4GHz Core i7 CPU
(including the construction of MST). The speed advantage
makes tree filter a practical filtering tool for many applications.

II. PRELIMINARIES AND RELATED WORK

In this section, we provide some basic concepts and notions,
as well as a brief review of related work.

A. Edge-preserving Smoothing

1) Bilateral-filter-like Techniques: Bilateral filter (BLF)
[1] is an image-dependent, weighted-average filter in which
the weight is determined by both pixel spatial distance and
color/intensity difference. Specifically, for each pixel i in
image I , the bilateral filtered output Bi is computed by

Bi =
∑
j∈Ω

bi(j)Ij , (1)

where Ω is the set of all pixels in the entire image and b i(j) is
the bilateral weight of pixel j contributing to i. The bilateral
weight bi(j) is calculated by

bi(j) =
Gσs(‖i− j‖)Gσr (‖Ii − Ij‖)∑

p∈Ω

Gσs(‖i− p‖)Gσr(‖Ii − Ip‖) , (2)

where the spatial weighting function Gσs(x) and
color/intensity (a.k.a. range) weighting function Gσr (x)
are typically 2D Gaussian functions with variances σs and σr,
respectively. Note that although Ω covers the entire image,
far pixels from i will have weights approximately to zero due
to spatial Gaussian kernel.

If we use another guidance image Ĩ instead of the original
image I to calculate the range weighting kernel, the filter
becomes

B̃i =
∑
j∈Ω

b̃i(j)Ij , (3)

b̃i(j) =
Gσs(‖i− j‖)Gσr (‖Ĩi − Ĩj‖)∑

p∈Ω

Gσs(‖i− p‖)Gσr (‖Ĩi − Ĩp‖)
, (4)

which is often called joint bilateral filter [19].
Bilateral filter is widely used for its simplicity and effective-

ness in many applications [20]. However, its brute force imple-
mentation is very slow. There are many accelerated versions
utilizing quantization and/or downsampling techniques [21],
[22], [23], [24], [25], [26], which can achieve rather fast speed.
Specially, when a constrained range filter is used, bilateral
filter can be implemented recursively thus can achieve an
extremely fast speed [27]. Besides, some other fast edge-
preserving filters try to achieve similar filtered results to bilat-
eral filter using new approaches, e.g., linear regression based
method [5], geodesic distance transform based method [7],
domain transform based method [8], adaptive manifold based
method [28]. For example, the fastest method is reported
by the adaptive manifold paper [28], which can process 10-
megapixel color image at around 50fps on modern GPU.
Similar to the bilateral filter, these methods are not designed
to smooth out fine scale details with high intensity contrasts.

In order to avoid the artifacts introduced by edge blurring
or edge sharpening in image edge-preserving decomposition
applications, Farbman et al. [3] propose an edge-preserving
filtering method based on weighted least square (WLS) opti-
mization, whose objective function is regularized by image

3

gradients. The main idea of their method is to force the
filtered results at regions where gradient is large to be as
close as possible to the input image, but that at other regions
to be smoothed. Fattal [4] achieves a very fast speed for
edge-preserving decomposition using a novel edge-avoiding
wavelets approach, but the filtered results commonly seem
noisy and are not satisfactory for most applications. Paris
et al. [9] propose a technique to perform edge-preserving
filtering based on local Laplacian pyramid manipulation and
also show their method can avoid artifacts over edges. A recent
accelerated version of the filter [29] utilizing downsampling
and interpolation techniques makes it become a practical
and ideal choice for some applications, such as HDR tone
mapping, to generate artifact-free results. These methods can
effectively avoid edge blurring or sharpening which may be
introduced by bilateral filter, but they are not designed to
smooth out high-contrast, fine-scale details since they are
commonly based on image contrasts or gradients.

Besides, Xu et al. [10] proposed an edge-preserving smooth-
ing method based on a global optimization on the L 0 norm
of image gradients (i.e., counting gradient jumps) to produce
piecewise constant images. The method can filter input signals
into staircase-like signals and thus achieve an impressive,
strong smoothing effect. Since it is also based on image
gradients, it will preserve high-contrast, fine-scale details.

Although the filtering responses of the above operators
differ from each other, the common behavior of these operators
is to smooth out low-contrast details from input images as
they typically only use pixel color/intensity contrasts (or image
gradients) to distinguish details from major image structures.
We refer these operators as bilateral-filter-like techniques in
this paper. Note that our proposed tree filter is not designed
to behave like such operators.

2) High-contrast Detail Smoothing: In order to smooth out
high-contrast, fine-scale details from images, local-histogram-
based filters [13], [14], [15] attempt to solve it by looking
into the distribution of neighboring pixels around each pixel
rather than image contrasts or gradients. The simplest, well-
known example is the median filter, which is to replace each
pixel with the median of its neighboring pixels. More robust
smoothing can be achieved by using other robust statistics
such as mode instead of median. For example, closest-mode
filter is to replace each pixel with the closest mode to center
pixel in smoothed local histogram, and the dominant-mode
filter is to instead use the mode having the largest population
(not related to center pixel) [15]. Although mode filters can
generally produce more smoothing results with sharp edges,
they often face a problem of serious deviation from the original
edges (especially at corners) since local histogram completely
ignores image geometric structures.

Subr et al. [16] propose a method for smoothing out high-
frequency signal oscillations, regardless of their contrasts,
by constructing local extremal envelopes. The envelopes are
constructed by first locating image local extremal points using
sliding window and then computing interpolation between
local extremal points using weighted least square minimiza-
tion. After constructing a maximal envelope and a minimal
envelope, respectively, for each image, the output is computed

as the average of the two envelopes. The simple strate-
gies employed by their method make it suffer from several
weaknesses when filtering natural images. First, using sliding
window to locate local extrema makes the method sensitive
to irregular high-frequency textures or details (see Fig. 8(f)).
Second, it will falsely remove slender significant regions due
to the sliding window, as described in Sec. I. Third, the
averaging between extremal envelopes often leads to results
with considerably shifted colors/intensities (e.g., the results
presented in their paper commonly seem brighter than input
images).

Xu et al. [17] design a novel local variation measure, namely
Relative Total Variation (RTV), to distinguish textures from
major image structures regardless of contrasts, and propose to
perform smoothing in an optimization framework. The RTV is
designed based on their key observation that the aggregation
result of signed gradient values in a local window often has
a larger absolute value for major edges than for textures,
since the gradients for textured region are usually inconsistent
within a local window and the aggregation will counteract each
other. Their method can produce impressive results for highly
textured images (such as mosaic images or graffiti on textured
materials), but it may overly smooth natural images.

Su et al. [18] strive to construct a special guidance image
and then use it to perform joint bilateral filtering on the input
image to achieve strong smoothing. The guidance image is
constructed by performing a low-pass filtering on input image
followed by an edge sharpening step using L0 smoothing [10].
However, the solution strongly relies on the L0 smoothing
technique to compensate for edge loss due to low-pass filtering
(in the edge sharpening step), which is brittle and may not
work well in many cases. Besides, the whole pipeline involves
too many parameters and is sensitive to parameter choice in
each step, thus in practice it is hard to tune parameters to
produce satisfactory results.

B. Minimum Spanning Tree for Image

By treating an image as a standard 4−connected, undi-
rected grid (planar graph) with nodes being all the image
pixels and edges between nearest neighboring pixels being
weighted by color/intensity differences, a minimum spanning
tree (MST) can be computed by removing edges with large
weights (Kruskal algorithm) [30], leaving the remaining edges
connecting through all pixels as a tree (see Fig. 2). The MST
and related algorithms can be found in many image processing
tasks, e.g., segmentation [31], [32], denoising [33], abstraction
[34]. In this paper, we address the problem of efficient image
smoothing for high-contrast details. We use the notion tree
distance to refer to the length of the path between two nodes
on the tree (letting the distance between neighboring nodes
be 1). For example, the tree distance between the two marked
nodes in Fig. 2(c) is 5.

The MST extracted from image has an important property
which makes the tree distance be an edge-aware metric: MST
can automatically drag away two dissimilar pixels that are
close to each other in the spatial domain (see Fig. 2(c)).
More importantly, small isolated region surrounded by large
homogeneous region with dissimilar color/intensity (see Fig.

4

(a) Planar graph (b) MST (c) Tree distance

Fig. 2. Illustration of a MST from image. (a) a planar graph in which nodes
are image pixels and edges are with costs weighted by color/intensity differ-
ences between neighboring pixels. (b) a MST extracted from the planar graph,
in which edges with large costs are removed during the MST construction.
(c) the tree distance between the two pixels on the MST is 5.

(a) Small region (b) Slender region (c) Large region

Fig. 3. MST rank maps for images in Fig. 1. The rank value of each pixel
is its layer number in the tree (from tree root). Brighter color in the rank map
indicates larger rank value. (The top-left image pixel is the root node of the
MST.)

1(a)) will be connected to the surrounding region with a
short tree distance during the MST construction (because MST
ensures that all image pixels should be connected together
through the tree). On the other hand, if the isolated region
is large enough (see Fig. 1(b) and 1(c)), most of the pixels
inside it will be connected to the surrounding region with
large tree distances. This can be illustrated by visualizing the
MST rank map (a rank value of a node refers to its layer
number from root node) corresponding to each of the above
cases (note that although tree distance is not the same as rank
difference, the rank map can serve as a good visualization
tool for inspecting tree distance). From the rank maps (Fig. 3)
corresponding to the images in Fig. 1 we can see that, both
the slender region and the large region can be easily identified
from the rank map (which means pixels inside the regions
have large rank differences, i.e., large tree distances, to pixels
outside the regions), while the small isolated region can hardly
be found on the rank map (which means the rank differences
between pixels inside the region and pixels outside the region
are not significant). Although smaller rank difference does not
necessarily mean smaller tree distance, it is often the case for
pixels that are near to each other in image spatial domain
(which is exactly the case for small isolated regions).

One obvious problem of the MST is that there might be
some “false edges” introduced, which can be easily notified at
the right side of the large region in Fig. 3(c). Be aware that
although the rank values of pixels at the right side are similar
to that of some pixels inside the region, the tree distances
between them are actually not that short. The actual problem
is that the tree distance from the downside pixel to the upside
pixel is large, but in fact, they are similar and close to each
other in the original image. The same problem will happen on
a constant image, where any two neighboring pixels that are
expected to be close to each other might have arbitrarily far

distance on the tree.
Another subtle yet notable problem of the MST is the “leak”

problem, which can be found in a close inspection (e.g., in Fig.
3(c), the “leak” happens at the bottom of the region). Since the
MST forces every pixel to eventually be connected through the
tree, even an isolated region with hard edges has to contain at
least one bridge to the rest of the image, through which the
nearby dissimilar pixels may have short tree distances. Another
case when “leak” may happen is near blurry edges, where there
is gradual transition between dissimilar colors/intensities.

Therefore, in order to utilize MST to perform edge-
preserving smoothing, pixel spatial distance and color/intensity
difference beside tree distance need to be involved. We will
address these problems in the proposed tree filter.

III. TREE FILTER

We now present the tree filter, a weighted-average filter that
can smooth out high-contrast details while preserving major
image structures.

A. Motivation

As described in the previous section, tree distance on MST
can serve as an edge-aware metric for (inversely) measuring
pixel affinity1 which can distinguish small isolated region
from large homogeneous region, except that it often faces the
“false edge” and “leak” problems. Inspired by the idea of col-
laborative filtering [35]2 commonly used in recommendation
systems, which is to make predictions about the interests of
a user by collecting preferences of other users having similar
tastes, we can collaboratively solve the problems by consulting
nearby similar pixels.

Specifically, suppose a pixel i is located at the “leak” point
of a large homogeneous region, it may have a short tree
distance to a dissimilar pixel j outside the region, which means
there is a strong affinity between i and j by simply measuring
tree distance. However, this is not what we want since we
hope their affinity to be weak in order to keep the main image
structure. Here comes the solution: if pixel i asks many other
nearby similar pixels, denoted as ks, whether each of them
has a short or long tree distance to j, and then combines all
the answers together to make its final decision – whether it
has a weak or strong affinity to j, the result will be more
reliable. Since i is inside the large homogeneous region, there
will be many similar ks nearby, many of which should have
large distances to j (because they are not “leak” point). Thus
the final decision will probably be “weak”. Consider another
case when pixel i is located at a small isolated region (Fig.
1(a)), nearby similar ks will also have short distances to j,
hence the final decision of whether the affinity between i and
j is weak or strong will be “strong”. For the “false edge”
problem, the scenario is similar.

Based on the above idea, we next define the tree filter,
and then interpret it intuitively by viewing pixel affinity in

1In this paper, we use affinity to refer to the desired impact that two pixels
exert on each other when performing edge-preserving smoothing. Stronger
affinity means greater impact.

2Note the concept collaborative filtering here is not the same as that in
BM3D denoising algorithm [36].

5

a probabilistic framework simultaneously considering pixel
spatial distance, color/intensity difference, as well as tree
distance.

B. Definition

We define the tree filter as follows. For each pixel i in image
I , the tree filtered output Si is computed by

Si =
∑
j∈Ω

wi(j)Ij , (5)

where Ω is the set of all pixels in the entire image and wi(j)
is the collaborative weight of pixel j contributing to i. The
collaborative weight wi(j) is calculated by

wi(j) =
∑
k∈Ω

bi(k)tk(j), (6)

where Ω is again the set of all pixels in the entire image and
bi(k) and tk(j) are the bilateral weight and the tree weight,
respectively. The bilateral weight bi(k) is the same as that
defined in Eq. (2), which is used for selecting nearby similar
pixels ks (the weight is attenuated with the increase of either
spatial or range distance between i and k). The tree weight
tk(j) is determined by the tree distance from k to j (denoted
as D(k, j)):

tk(j) =
Fσ(D(k, j))∑

q∈Ω

Fσ(D(k, q))
, (7)

where Fσ(x) is a falling off exponential function controlled
by parameter σ:

Fσ(x) = exp
(
−x

σ

)
. (8)

Claim The sum of all collaborative weights for a particular
pixel i is 1.

Proof
∑
j∈Ω

wi(j) =
∑
j∈Ω

∑
k∈Ω

bi(k)tk(j) =
∑
k∈Ω

∑
j∈Ω

bi(k)tk(j)

=
∑
k∈Ω

bi(k)
∑
j∈Ω

tk(j) =
∑
k∈Ω

bi(k) · 1 = 1. �

C. Explanation

The definition shows that tree filter is a weighted-average
filter. The weight of a pixel j contributing to pixel i, namely
collaborative weight wi(j), can be easier to understand if we
view it in a probabilistic framework. If we consider the weight
wi(j) as the probability of pixel j supporting pixel i, denoted
as p(j), then it can be formulated using mixture model as
follows (we do not mean to estimate a mixture model but
just use the concept to understand the weight wi(j)). We take
each of the pixel k in the image as one component of the
mixture, whose probability p(k) is measured by the similarity
(both spatial and range) between pixel k and i. The conditional
probability of pixel j belonging to each component k, denoted
as p(j|k), is determined by the tree distance from pixel j
to pixel k (the farther tree distance, the lower probability).

Then the probability of pixel j supporting pixel i, p(j), can
be calculated by probability marginalization

p(j) =
∑
k∈Ω

p(j|k)p(k),

which is exactly the same form as Eq. (6).
The reason why tree filter is able to smooth high-contrast

details and preserve major image structures (including large
homogeneous regions and slender regions that contain suffi-
cient connected pixels) can be intuitively explained as follows.

(a) Small region (b) Large region

(c) Textured region (d) Failure case

Fig. 4. Several cases when calculating collaborative weight wi(j) (black
arrow). The green dash line stands for bilateral weight bi(k) and red dash
line stands for tree weight tk(j). Note that k should run through all pixel
locations in the image while calculating the wi(j) of one specific j.

Case 1 (Fig. 4(a)): “Small isolated region” – pixel i is
located at a small isolated region and there is no similar pixel
outside the isolated region. Consider the process of filtering
pixel i: when calculating wi(j) for each pixel j, only the ks
within the isolated region have large bilateral weights b i(k),
thus wi(j) is approximately equivalent to the tree weight
ti(j) (i.e., only consider ks located near i). Therefore the tree
filtered output for pixel i is

Si =
∑
j∈Ω

wi(j)Ij ≈
∑
j∈Ω

ti(j)Ij . (9)

Since tree weight ti(j) only considers the tree distance on
MST, the filtering actually completely ignores pixel contrasts
(see Sec. II-B). The effect is just like a traditional low-
pass filtering (like Gaussian filtering), which is desired for
smoothing details.

Case 2 (Fig. 4(b)): “Large homogeneous region” – consider
the critical case that pixel i is located at the “leak” point of
the large region. Through comparison, it is easy to understand
that a j inside the region has much larger weight w i(j) than a
j outside the region, since the inside j will have much more
ks with both higher bilateral weights bi(k) and tree weights

6

tk(j) than the outside j. Therefore the tree filtering for pixel i
is a weighted average which gives higher weights to js inside
the region and lower weights to js outside the region. In this
manner the edge of the region gets preserved. For slender
region having sufficient pixels, the case is the same.

Case 3 (Fig. 4(c)): “Textured region” – pixel i is located
at a small isolated region and there are similar small isolated
regions nearby. In this case, pixels in each small isolated region
have short tree distances to surrounding dissimilar pixels.
When calculating wi(j) of any j, the ks located at all isolated
regions will have large bilateral weights. Thus a j will have
large weight wi(j) if it has a short tree distance to such ks,
no matter whether the j is inside or outside an isolated region.
As a result, the tree filtering for pixel i will give large weight
to similar pixels at every isolated region and the surrounding
dissimilar pixels near every region. In this way, smoothing is
achieved regardless of contrasts.

Failure Case (Fig. 4(d)): One failure case is that when pixel
i is located at a small isolated region which is near to a
large homogeneous region. In this case, the filtering will only
average over similar pixels to pixel i (just like case 2) and thus
the small isolated region (which we hope to remove) remain
there after the filtering (because of the large number of similar
pixels in the nearby large region). We will further discuss this
problem in Sec. V-B.

D. Filter Kernel

The above explanation can be easier to understand by
explicitly plotting the filter kernel for different cases. Fig. 5
shows two examples of the kernel plot for pixels in a real
image. For pixel located in large homogeneous region (first
row), the tree filter kernel only assigns nonzero weights to
nearby similar pixels, just like the bilateral filter kernel (though
not the same). For pixel located in textured region (second
row), unlike the bilateral filter kernel which only assigns
large weights to nearby similar pixels, the tree filter kernel
assigns large weights to not only the nearby similar pixels,
but also their surrounding pixels (having short tree distances to
them). This enables strong smoothing on the textured region,
regardless of pixel contrasts.

E. Parameters

Tree filter has three parameters, σs, σr , and σ, due to the
functions for calculating bilateral weights and tree weights,
respectively. The σs and σr control the selection of nearby
similar pixels, which are the same as in the bilateral filter.
The σ determines the attenuation speed of tree weight as
tree distance increases. In this paper, we follow the recent
convention of the parameters in bilateral filter [20] (that is, σs

is measured by pixel number and σr is a real number between
0 and 1). Similar to σs, σ can also be measured by integer
number (since the tree distance is 1 between neighboring
nodes). In practice, however, we find that using a real number
between 0 and 1 related with image size (i.e., for an image
having h by w pixels, we substitute σ × 1

2 min(h,w) into the
exponential function instead of the original σ to calculate tree
weights) is easier to control the amount of smoothing. Thus
we present σ in such a manner in this paper.

(a) Image patch (b) Bilateral filter (c) Tree filter

Fig. 5. Illustration of filter kernels. The kernels are centered at the pixels
denote by red dots. Note that the MST in tree filter is extracted from the
original full image (not from the patch itself).

The three-degree-of-freedom parameter tuning seemingly
makes it difficult for tree filter to produce satisfactory results.
However, in order to produce results with sharp edges, we
usually fix σr to a small value (typically σr = 0.05) (since
we do not want to select dissimilar pixels for collaborative
filtering) and adjust σ together with σs to achieve different
amount of smoothing. Unless otherwise specified, we use
σr = 0.05 to produce all the results in this paper.

Fig. 6 shows the tree filtering results of the “baboon” image
(Fig. 7(a)) in different parameter settings. With a quick glance
from the upper row to the lower row, it is easy to find that,
for a certain σ, smaller σs tends to yield blocky and sharp
results, while larger σs will generate smoother results. A closer
inspection (Fig. 7(b)) further reveals that smaller σs can gen-
erally perform well on smoothing out fine-scale, high-contrast
details, but may result in “false edges” or “leak” because of
fewer pixels participating in the collaborative filtering. Larger
σs can solve the “false edge” and “leak” problem but may
cause details reappear since too many pixels participating
in the collaborative filtering will lead to the failure case
described in Sec. III-C (details near large homogeneous region
preserved). In extreme cases, σs = 0 means no collaborative
filtering happens and σs = ∞ means all similar pixels in the
entire image will participate into the collaborative filtering.
In practice, the parameter tuning for σ often needs to make
trade-offs between detail-smoothing and edge-preserving. As
described above, with smaller σs, the filter’s smoothing ability
for high-contrast details is strong but it may face “false edge”
and “leak” problem. On the other hand, with larger σ s, the
filter can generate results more respecting to original edges, but
details may reappear. We find σs = 2 ∼ 8 can often produce
desired results in practice, according to specific images and
applications.

Observation on the filtering results from left to right shows
the role of the σ. As σ increases, larger-scale region will be
recognized as detail. This is because the σ in the weighting
function Eq. (8) controls the falling rate. With a larger σ value,
the falling rate becomes slower and pixels with larger tree
distance will still be assigned larger tree weights. Thus the

7

(a) σ = 0.05, σs = 4 (b) σ = 0.10, σs = 4 (c) σ = 0.20, σs = 4 (d) σ = 0.40, σs = 4

(e) σ = 0.05, σs = 8 (f) σ = 0.10, σs = 8 (g) σ = 0.20, σs = 8 (h) σ = 0.40, σs = 8

Fig. 6. Effect of tree filtering when varying parameters σ and σs (σr is fixed to 0.05). Close-ups of the second and third columns are shown in Fig. 7.

(a) “Baboon” image (b) Close-ups of Fig. 6

Fig. 7. The “baboon” image (size 512× 512) and close-ups of tree filtering
results in Fig. 6 (the second and third columns).

collaborative filtering will involve more dissimilar pixels and
pixels inside homogeneous region will have larger chance to be
averaged with dissimilar pixels outside the region. However,
the side-effect of a too large σ is that the “leak” problem may
be more serious. This is analogous to the overly-blurred-edge
effect in other low-pass filters (such as Gaussian filter) with
aggressively large parameters. To respect the original edges,
we usually do not use too large σ value (typically σ = 0.01 ∼
0.20) in practice.

IV. FAST IMPLEMENTATION

The straightforward implementation of tree filter is very
slow, since it requires searching and computing tree distances
among all pixels. In this section, we present the fast algorithms
for implementing tree filter, which give tree filtering a low
computational complexity (linear to pixel number) and a fast
speed. For example, it takes about 0.25 seconds for filtering
a 1-megapixel 8-bit image on our CPU (Intel 3.4GHz Core
i7-2600 CPU with 4GB RAM, using a single core).

A. Separable Implementation
Substituting Eq. (6) into Eq. (5) and rewriting the tree filter

kernel, we have

Si =
∑

j∈Ω

∑

k∈Ω

bi(k)tk(j)Ij =
∑

k∈Ω

∑

j∈Ω

bi(k)tk(j)Ij (10)

=
∑

k∈Ω

bi(k)
∑

j∈Ω

tk(j)Ij
def
==

∑

k∈Ω

bi(k)Tk, (11)

where Tk is computed by

Tk =
∑
j∈Ω

tk(j)Ij . (12)

Note Eq. (11) is actually a joint bilateral filtering per-
formed on image T (using input image I to calculate bilateral
weights), where T is obtained by performing a weighted
average (defined by Eq. (12)) on the input image I using
tree distance. We here name the weighted average using tree
distance as tree-mean filtering. Thus the tree filtering actually
can be implemented by a tree-mean filtering followed by a
joint bilateral filtering.

The direct implementation of tree-mean filtering is still
very slow. Fortunately, using the MST non-local aggregation
algorithm proposed in our recent work [37], the tree-mean
filtering can be recursively implemented and achieve a very
fast speed. Specifically, substituting Eq. (7) into Eq. (12), we
have

Tk =

∑
j∈Ω

Fσ(D(k, j)) · Ij
∑
q∈Ω

Fσ(D(k, q)) · 1 , (13)

where both the numerator and denominator can be computed
efficiently using the MST non-local aggregation algorithm ,
which has a computational complexity linear to the number
of image pixels [37]. Note the difference of tree distance
definition between this paper and [37]: the length between

8

neighboring nodes is a constant 1 in this paper, while it
is related to color/intensity difference in [37]. Nevertheless,
the algorithm in [37] is applicable here. According to our
experiments, the whole tree-mean filtering can process 1-
megapixel 8-bit image in about 0.05 seconds on our CPU.

The joint bilateral filter has many fast approximation ver-
sions, we here employ the simple and fast implementation by
our previous work [24], which also has a computational com-
plexity linear to pixel number and can process 1-megapixel
8-bit image in about 0.10 seconds on our CPU (using 8-layer
approximation).

B. MST Extraction

Now we present an efficient linear time MST extraction
algorithm, specially designed for 8-bit depth image (which
may have multiple channels). Let E and V denote the edges
and nodes of the MST, respectively. The fastest implemen-
tation of Prim’s algorithm [38] for building MST requires
O(|E| + |V | log|V |) time using a Fibonacci heap [39]. How-
ever, in our case, all possible values of edge weight are integers
from 0 to 255 (for multi-channel color images, we use the
maximum of color differences among all channels as the edge
weight), which allow us to use a priority queue data structure
to implement insertion, deletion, and extraction of minimum
in constant time.

Specifically, the data structure consists of a bitset3 and 256
doubly-linked lists. The bitset has a size of 256, and it is used
to track what keys are currently in the priority queue. If there
is at least one node with key i in the queue, then the bit with
position i in the bitset is set to 1, otherwise it is set to 0. The
256 doubly-linked lists are numbered from 0 to 255, where
the list i consists of the graph nodes that have a key value of
i.

Insertion into this priority queue can be done in constant
time by inserting the node into the corresponding list, and
setting the corresponding bit in the bitset. Deleting a node is
done by removing the node from the corresponding list, and
then resetting the corresponding bit in the bitset if the list
becomes empty after the deletion. The above insertion and
deletion processes are done in constant time in a straight-
forward manner. Extracting a node with the minimum key
value is done by first finding the smallest bit position that is
set to 1 in the bitset, where the bit position represents the
minimum key value, and then the node can be extracted from
the corresponding list in constant time4.

3For example, the std::bitset in the GNU C++ Library.
4The trick to find the smallest bit position is to call the _Find_first()

method of std::bitset in GNU C++ Library, which runs in O(256/w)
time, where w is the bit-length of an integer. The GNU C++’s bitset is
implemented using 256/w unsigned integers, where each unsigned integer
represents w bits. This means that, for a 32-bit program (i.e., w = 32), the
bitset only visits 8 words in the worst case, and for a 64-bit program (i.e.,
w = 64), it only visits 4 words in the worst case. Each visit invokes a very
fast CPU instruction that can find the first bit position with a value 1 in the
binary representation of a machine word in constant time. In practice, the
keys are usually small, so the search for the first 1-bit can be stopped once
the 1-bit is found, without visiting the remaining words (i.e., the unsigned
integers). Note that Microsoft Visual C++’s std::bitset does not contain
a _Find_first() method, so we implemented the GNU C++’s bitset by
ourselves with the help of _BitScanForward_ intrinsic (which is used to
find the first 1-bit in a word) in Microsoft Visual C++.

Therefore, using the data structure described above, the
Prim’s algorithm runs in O(|E| + |V |) time. By constraining
the input graph to be a 4−connected, undirected grid, the
Prim’s algorithm runs in O(|V |), and is linear in the number
of nodes in the graph. Thus for 8-bit depth image, a MST can
be constructed using the above algorithm in linear complexity.
It takes about 0.07 seconds on our CPU to build a MST for a
1-megapixel image (either grayscale or color image).

Since the MST may be easily affected by image noise when
dealing with natural image, in practice we suggest to pre-
process the input image using a Gaussian filter with small
variance (typically 1 pixel) before building a MST from it.
The additional Gaussian filtering takes about 0.03 seconds for
a 1-megapixel image in our implementation.

V. MORE ANALYSIS

In this section, we provide a comparison of the tree filter to a
few other operators addressing high-contrast detail smoothing.
The limitation and several potential improvement of the tree
filter are also discussed.

A. Comparison

Fig. 8 shows the comparison of edge-preserving smoothing
on a “flower farm” image. The flower farm in the image is full
of high-contrast details that we want to smooth out. Bilateral-
filter-like techniques will commonly fail in this case since they
distinguish details by contrasts or gradients (for two represen-
tatives, see Figs. 8(b) and 8(c)). The local-histogram-based
filters, such as median filter or dominant mode filter [15],
which do not depend on center pixel, face a problem of serious
deviation from original edges (see left close-up window of Fig.
8(d)) since they completely neglect the geometric information
in the image. One exception in the family of local-histogram-
based filters is the closest mode filter [15], which depends on
the closest mode to center pixel in a local window. The closest
mode might change dramatically when sliding a window on
irregularly textured regions (such as the flower farm region in
the image), hence there are prominent unnatural spots standing
out in the output (Fig. 8(e)). The local-extrema-based method
proposed by Subr et al. [16] also has this problem (Fig. 8(f)):
instead of depending on closest mode, it depends on local
extrema.

The recent optimization-based method by Xu et al. [17]
can consistently produce high-quality smoothing results for
textured images, but since its objective function is regularized
by a variation measure (RTV), which is also computed using
sliding window, the results may have some deflection near
corners (see left close-up windows of Fig. 8(g) and Fig.
10). Moreover, the method relies on solving large sparse
linear system and thus its computational cost is high. In
our experiments, their Matlab implementation takes about 45
seconds to process a 1-megapixel image (although optimized
C++ implementation is expected to be faster, it still takes a
few seconds on CPU). In contrast, our tree filter can generate
comparable results in a much faster speed (Fig. 8(h)). Fig. 10
shows another two examples of the comparison.

Another recently proposed method that can achieve edge-
preserving smoothing regardless of image contrasts is in [18].

9

(a) Input image (b) BLF (σs=5, σr=0.15) (c) L0 smoothing (λ=0.04, κ=1.05) (d) Median Filter (r = 6)

(e) Closest Mode (σK=0.1, σW =3) (f) Subr et al. [16] (k=3) (g) Xu et al. [17] (λ=0.03, σ=5) (h) Ours (σ=0.1, σs=5)

Fig. 8. Comparison of high-contrast detail smoothing. The parameter settings are corresponding to each operator’s own formulation and tuned with our best
efforts for smoothing out high-contrast details while preserving major structures (e.g., smooth the flower region and keep the edges of houses clear). Only Xu
et al. [17] and our tree filter can successfully smooth out high-contrast trivial details (see the right close-up windows). Note the subtle difference between the
two operators: Xu et al. [17] can produce more flattened results, while our tree filter can generate results with more accurate edges around corners.

However, their pipeline involves too many steps and is brittle
in practice (especially the manipulation of a low-pass filtering
followed by an edge sharpening). Fig. 9 shows a comparison
of our tree filter to their method. Also note that the edge
sharpening step in their pipeline is based on L0 gradient
optimization, which is rather computationally intensive.

B. Limitation and Improvement

1) Tree-Median Filtering: As we analyzed in previous
sections, tree filter uses the idea of collaborative filtering to
alleviate the “leak” problem of the tree distance. However, in
extreme cases, the simple strategy of collaborative weighted-
average may not be able to fix the “leak” problem (see the
top-right corner of Fig. 11(e), the white region is contaminated
by the “leak”). Complex strategies could be employed to
solve this problem, which may inspire future novel filter. But
we here propose a simple solution from another perspective:
to modify the tree-mean filtering step in the tree filter’s
implementation.

As described in Sec. IV-A, the tree-mean filtering is to
calculate weighted average using tree distance. The weights as-
signed to other pixels completely ignores their color/intensity
differences to center pixel, and thus the “leak” problem of tree
distance is introduced in this way. Let’s consider a more clever

(a) JIAS [18] (b) JLLM [18] (c) Ours (σ=0.1, σs=8)

Fig. 9. Comparison to the two methods proposed by Su et al. [18]: joint
iterative asymmetric sampling (JIAS) and joint local linear model (JLLM).
Their methods rely on a low-pass filtering followed by an edge sharpening,
which is brittle in practice and may easily fail on smoothing irregular details.

way for choosing an output value for center pixel: if we use
tree distance to collect some nearby neighbors, and then use
the histogram of these neighbors for determining the output,
the “leak” problem may not be introduced. For example, use
the median among these neighbors as center pixel’s output –
that is, replacing the tree-mean filtering with a tree-median
filtering in the tree filter’s implementation (the second step
remains unchanged). Fig. 11(f) shows a result obtained by
the improved tree filter. The “leak” problem get perfectly
solved. Note that the overall color appearance is more like
the input image than the original one. This is because it does
not mix colors together like the weighted-average in tree-mean

10

(a) Input (b) BLF (σs=8, σr=0.2) (c) Xu et al. [17] (λ=0.015, σ=4) (d) Ours (σ=0.2, σs=5)

(e) Input (f) BLF (σs=5, σr=0.1) (g) Xu et al. [17] (λ=0.015, σ=3) (h) Ours (σ=0.2, σs=5)

Fig. 10. Image smoothing examples. Both our tree filter and Xu et al. [17] are designed to smooth high-contrast details. Note the subtle difference between
the two operators: Xu et al. [17] can produce more flattened results, while our tree filter can generate results with more accurate edges around corners.

filtering.
One problem of the tree-median filtering is that it currently

does not have a fast algorithm, hence the improved tree filter
will be much slower than the original tree filter. Another
problem is that, if stronger smoothing is desired, increasing the
parameter of tree-median filtering (e.g., the radius of collecting
neighboring pixels on the tree) may not help.

2) Iterative Tree Filtering: We mentioned a failure case
of the tree filtering for smoothing details in Sec. III-C. When
undesired details are near a similar large homogeneous region,
they cannot be removed by the tree filter because of the
collaborative support from the large region (see left close-
up window of Fig. 10(d)). This is particularly serious for
strongly textured images such as mosaics. Fig. 12(c) shows an
example of such failure case: residual textures are obvious in
the filtered result, especially near large homogeneous regions
(see the right close-up window).

Fortunately, we notice that, although the textures cannot be
completely removed, they actually get strongly attenuated after
the tree filtering. Thus if we perform another one or more
iterations of tree filtering on the result, the residual textures
can eventually be completely removed. Fig. 12(d) shows the
result of 5 iterations of tree filtering (note the parameter σ is set
to a smaller value to avoid overly smoothing). The overall look
of the result is comparable to the one produced by state-of-the-
art optimization-based method for texture-structure separation
[17], while a closer examination shows that our method is
better at preserving image structures which may be mistakenly
identified as textures by the RTV (see left close-up window).

(a) Input (close-up) (b) TF kernel (c) BLF kernel

(d) Input (e) Original Tree Filter (f) Improved Tree Filter

Fig. 11. Extreme case of “leak” problem. The top-right corner region has a
“bridge” connected to the other region by the MST. Thus a pixel located near
the “bridge” will be contaminated by dissimilar pixels from the other region.
The kernel of the tree filter for such a pixel is shown in (b), and the kernel
of bilateral filter is shown in (c) for reference. Replacing tree-mean filtering
with tree-median filtering improves the result, see (f). Note the difference at
the top-right corner.

Fig. 13 shows another comparison of the smoothing on highly
textured image.

3) Multi-Tree Filtering: Besides the proposed collaborative
filtering scheme, the “false edges” and “leak” problem can
also be treated in another way. Since the positions of the “false
edges” and “leak” are quite arbitrary due to the MST construc-
tion, considering other spanning trees where “false edges” and

11

(a) Input (b) Xu et al. [17] (λ=0.015, σ=3) (c) Tree Filter (σ=0.1, σs=3) (d) Iterative TF (σ=0.02, σs=3)

Fig. 12. Iterative tree filtering for texture smoothing. The single iteration tree filtering will leave some residual textures, while the iterative tree filtering (5
iterations) can completely smooth out the textures. Compared to the optimization-based method [17], our method can better preserve image structures which
may be mistakenly identified as textures by RTV (see the eyebrow in the left close-up window).

(a) Input (b) Xu et al. [17] (c) Iterative TF

Fig. 13. Iterative tree filtering for texture smoothing. Parameters of our
iterative tree filtering: σ=0.01, σs=3, 4 iterations. The result of Xu et al. [17]
is overly flattened with staircase effects, while our result seems more natural
for reflecting the gradual transition in original image (see her cheek). We
suggest readers to take a close look at the results in a high resolution display.

“leak” are located at different sites may help eliminating the
problems. A natural idea is that, instead of constructing only
one minimum spanning tree, we can construct several spanning
trees and then use the largest tree distance (between two
pixels) among all the trees to calculate pixel affinity. However,
constructing several spanning trees which have different “false
edges” and “leak” positions between each other, as well as
efficiently calculating tree distances using several trees, is non-
trivial and will be left as future work.

VI. APPLICATIONS

The smoothing of high-contrast details has been shown
useful in many applications [17], [18]. We in this section

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re

ci
si

on

F=0.59 TF + Sobel

F=0.59 Xu + Sobel

F=0.53 BLF + Sobel

F=0.49 Sobel

Fig. 14. Edge/boundary detection evaluation on BSDS300 [40]. The
evaluation is performed on 100 test images using grayscale input (filtering is
also performed on grayscale image). Parameters for bilateral filtering and tree
filtering are σs = 3, σr = 0.03, σ = 0.1. For Xu et al. [17], parameters
are λ=0.015 and σ=3. The score shown in the figure is produced using the
benchmark code [40] (the higher, the better).

briefly review several applications where tree filter can find
its place.

A. Scene Simplification

The efficiency, as well as the ability to smooth out high-
contrast details, makes tree filter an ideal tool for serving
as a pre-processing tool for applications where trivial de-
tails are undesirable, e.g., edge/boundary detection, image
abstraction, shape matching, scene understanding. As a first
example, we demonstrate the benefits of tree filtering as a pre-
processing step for edge/boundary detection. For simplicity

12

(a) Input (b) Sobel (0.64) (c) BLF + Sobel (0.69) (d) TF + Sobel (0.77) (e) Human

Fig. 15. An example of the edge/boundary detection results on BSDS300 (with score in the caption), see Fig.14 for details. Tree filtering effectively reduces
trivial details which are not labeled as edges/boundaries by human subjects.

(a) Clean RGB image (b) Ground truth (c) With noise (19.1dB) (d) Joint BLF (28.3dB) (e) Joint TF (33.3dB)

Fig. 16. Disparity map denoising using joint filtering. From left to right: clean RGB images, ground-truth disparity map, disparity map deteriorated with
Gaussian noise, denoised disparity map using joint BLF (σs = 8, σr = 0.01), denoised disparity map using our joint tree filtering (σ = 0.02, σs = 8,
σr = 0.01). Note that in the close-up window, the joint BLF introduces textures in the RGB color image into the filtered result, while this does not happen
in joint tree filtering thanks to the strong smoothing ability of tree filtering. The captions under subfigures show the PSNR values.

and practicality, we use a lightweight edge detector, namely
Sobel detector, to perform the experimental evaluation (note
that other complicated operators can also be employed here
for evaluation, but we prefer such fast, simple yet effective
solution since it can be easily embedded in more complex
applications). Quantitative evaluation is conducted on a well-
known boundary detection benchmark, namely Berkeley Seg-
mentation Dataset (BSDS300) [40], which contains 100 test
images with human labeled “ground truth” boundaries. Fig.
14 shows the improvements of employing a pre-processing
step, either the bilateral filtering, tree filtering, or Xu et al.
[17], before performing the Sobel detector. Fig. 15 shows one
result among that of all 100 test images. It is clear in the results
that tree filtering or Xu et al. [17] can effectively reduce trivial
details in the scene and thus produce simplified scene for better
edge/boundary detection (note that tree filtering is substantially
faster than Xu et al. [17]). Similarly, a quick example of image
abstraction can be assembled by adding the edges back to the
filtered image (see Fig. 17).

B. Joint Filtering

Instead of using the original input image to build the MST,
using another guidance image to build the MST can make tree
filtering more flexible and powerful. For example, in depth
sensing applications where both depth image and RGB image
are available (such as commercial active or passive depth
sensing cameras), the obtained depth images are usually noisy
and can be joint filtered using the corresponding clean RGB
images as guidance [41]. To demonstrate such application, we

(a) Input image (b) Cartoon-like abstraction

Fig. 17. Abstraction example. Note that the high-contrast textured regions
cannot be flattened by bilateral-filter-like operators. Parameters of the tree
filtering are σ = 0.2, σs = 5.

use a dataset with ground-truth disparity map5 obtained from
structured light [42] and manually add Gaussian noise6 to
the ground-truth disparity map for denoising experiment. Fig.
16 shows an example of disparity map denoising using joint
filtering. As demonstrated in the experimental result, tree filter
can automatically “pick up” the major structures in guidance
image to perform the joint filtering, while at the same time
avoiding introducing trivial details of the guidance image into
the filtered result.

5Disparity is a notion commonly used in stereo vision literature, which is
inversely proportional to depth.

6Note that more realistic noise model should be established depending on
specific type of depth sensor (different depth sensors have different types of
noises, e.g., see [43] for a detailed discussion of denoising for time-of-flight
depth data), which is out of the scope of this paper. We here use the simplest
Gaussian noise model to demonstrate tree filter’s ability to ignore details from
guidance image while performing joint filtering.

13

(a) Input (b) Filtered (c) Texture replaced

Fig. 18. Texture replacement. We use iterative tree filtering (σ = 0.01,
σs = 2, 3 iterations) to separate the input image into texture layer and
structure layer. Replacing the wall brick texture with a textile texture yields
a plausible result. We suggest readers to take a close look at the results in a
high resolution display.

C. Texture Editing

Using the iterative tree filtering, we are able to separate
highly textured image into texture layer and structure layer.
The separation makes texture editing for such kind of image
easier. For example, simply replacing the texture layer with
another kind of texture can yield plausible result. Fig. 18
shows an example.

VII. CONCLUSION

We have presented the tree filter for strong edge-preserving
smoothing of images in presence of high-contrast details. The
tree filter utilizes a MST extracted from image, as well as the
idea of collaborative filtering, to perform weighted average
among pixels. Unlike previous image filtering operators, tree
filter does not have a 1D version for 1D signals, because
the MST explores the 2D structural nature of an image, e.g.,
some regions are connected if we view the image as a 2D
planar graph but may not be connected if we only consider
pixels row by row (as 1D signal) or window by window,
which is one of the desirable features distinguishing tree
filter from other operators. Thanks to the special properties
of MST and the collaborative filtering mechanism, tree filter
is able to smooth out high-contrast, fine-scale details while
preserving major image structures. The fast implementation
further makes tree filter a practical filtering tool that can serve
for many applications. We believe the tree filter will shed lights
on designing novel edge-aware image filters exploring the
intrinsic 2D structure of images and the collaborative filtering
mechanism.

REFERENCES

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in ICCV 1998. IEEE, 1998, pp. 839–846.

[2] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629–639, 1990.

[3] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Trans. Graph. (Proc. SIGGRAPH), vol. 27, no. 3, pp. 67:1–67:10, 2008.

[4] R. Fattal, “Edge-avoiding wavelets and their applications,” ACM Trans.
Graph. (Proc. SIGGRAPH), vol. 28, no. 3, pp. 22:1–22:10, 2009.

[5] K. He, J. Sun, and X. Tang, “Guided image filtering,” in ECCV, 2010,
pp. 1–14.

[6] A. Criminisi, T. Sharp, C. Rother, and P. P’erez, “Geodesic image and
video editing,” ACM Trans. Graph., vol. 29, no. 134, pp. 1–134, 2010.

[7] A. Criminisi, T. Sharp, and P. P’erez, “Geodesic forests for image
editing,” MSR technical report (MSR-TR-2011-96), 2011.

[8] E. Gastal and M. Oliveira, “Domain transform for edge-aware image
and video processing,” ACM Trans. Graph. (Proc. SIGGRAPH), vol. 30,
no. 4, pp. 69:1–69:12, 2011.

[9] S. Paris, S. Hasinoff, and J. Kautz, “Local laplacian filters: Edge-aware
image processing with a laplacian pyramid,” ACM Trans. Graph. (Proc.
SIGGRAPH), vol. 30, no. 4, pp. 68:1–68:12, 2011.

[10] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via l0 gradient
minimization,” ACM Trans. Graph. (Proc. SIGGRAPH Asia), vol. 30,
no. 6, pp. 174:1–174:12, 2011.

[11] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of
high-dynamic-range images,” ACM Trans. Graph. (Proc. SIGGRAPH),
vol. 21, no. 3, pp. 257–266, 2002.

[12] Z.-F. Xie, R. W. H. Lau, Y. Gui, M.-G. Chen, and L.-Z. Ma, “A gradient-
domain-based edge-preserving sharpen filter,” The Visual Computer,
vol. 28, no. 12, pp. 1195–1207, 2012.

[13] J. Van de Weijer and R. Van den Boomgaard, “Local mode filtering,”
in CVPR 2001, vol. 2. IEEE, 2001, pp. II–428.

[14] M. Felsberg, P. Forssén, and H. Scharr, “Channel smoothing: Efficient
robust smoothing of low-level signal features,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 2, pp. 209–222, 2006.

[15] M. Kass and J. Solomon, “Smoothed local histogram filters,” ACM
Trans. Graph. (Proc. SIGGRAPH), vol. 29, no. 4, pp. 100:1–100:10,
2010.

[16] K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale image
decomposition based on local extrema,” ACM Trans. Graph. (Proc.
SIGGRAPH Asia), vol. 28, no. 5, pp. 147:1–147:9, 2009.

[17] L. Xu, Q. Yan, Y. Xia, and J. Jia, “Structure extraction from texture via
relative total variation,” ACM Trans. Graph. (Proc. SIGGRAPH Asia),
vol. 31, no. 6, p. 139, 2012.

[18] Z. Su, X. Luo, Z. Deng, Y. Liang, and Z. Ji, “Edge-preserving texture
suppression filter based on joint filtering schemes,” IEEE Trans. Multi-
media, vol. PP, no. 99, p. 1, 2012.

[19] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image pairs,”
in ACM Trans. Graph. (Proc. SIGGRAPH), vol. 23, no. 3. ACM, 2004,
pp. 664–672.

[20] S. Paris, P. Kornprobst, and J. Tumblin, Bilateral filtering: Theory and
applications. Now Publishers Inc, 2009.

[21] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image process-
ing with the bilateral grid,” ACM Trans. Graph. (Proc. SIGGRAPH),
vol. 26, no. 3, pp. 103:1–103:10, 2007.

[22] F. Porikli, “Constant time o (1) bilateral filtering,” in CVPR 2008. IEEE,
2008, pp. 1–8.

[23] S. Paris and F. Durand, “A fast approximation of the bilateral filter using
a signal processing approach,” Intl. J. Computer Vision, vol. 81, no. 1,
pp. 24–52, 2009.

[24] Q. Yang, K. Tan, and N. Ahuja, “Real-time o (1) bilateral filtering,” in
CVPR 2009. IEEE, 2009, pp. 557–564.

[25] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian kd-trees for
fast high-dimensional filtering,” ACM Trans. Graph. (Proc. SIGGRAPH),
vol. 28, pp. 21:1–21:12, Jul. 2009.

[26] A. Adams, J. Baek, and A. Davis, “Fast high-dimensional filtering using
the permutohedral lattice,” Comput. Graph. Forum, vol. 29, no. 2, pp.
753–762, 2010.

[27] Q. Yang, “Recursive bilateral filtering,” in ECCV 2012, 2012, to appear.
[28] E. Gastal and M. Oliveira, “Adaptive manifolds for real-time high-

dimensional filtering,” ACM Trans. Graph. (Proc. SIGGRAPH), vol. 31,
no. 4, p. 33, 2012.

[29] M. Aubry, S. Paris, S. Hasinoff, and F. Durand, “Fast and robust
pyramid-based image processing,” MIT technical report (MIT-CSAIL-
TR-2011-049), 2011.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[31] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Intl. J. Computer Vision, vol. 59, no. 2, pp. 167–181,
2004.

[32] Y. Haxhimusa and W. Kropatsch, “Segmentation graph hierarchies,”
Structural, Syntactic, and Statistical Pattern Recognition, pp. 343–351,
2004.

14

[33] J. Stawiaski and F. Meyer, “Minimum spanning tree adaptive image
filtering,” in ICIP 2009. IEEE, 2009, pp. 2245–2248.

[34] T. Koga and N. Suetake, “Structural-context-preserving image abstrac-
tion by using space-filling curve based on minimum spanning tree,” in
ICIP 2011. IEEE, 2011, pp. 1465–1468.

[35] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” in WWW 2001. ACM, 2001,
pp. 285–295.

[36] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, 2007.

[37] Q. Yang, “A non-local cost aggregation method for stereo matching,” in
CVPR 2012. IEEE, 2012.

[38] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell System Technology Journal, vol. 36, pp. 1389–1401, 1957.

[39] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596–615, 1987.

[40] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in ICCV 2001, vol. 2,
July 2001, pp. 416–423.

[41] M. Mueller, F. Zilly, and P. Kauff, “Adaptive cross-trilateral depth map
filtering,” in 3DTV-CON 2010. IEEE, 2010, pp. 1–4.

[42] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using
structured light,” in CVPR 2003, vol. 1. IEEE, 2003, pp. I–195.

[43] F. Lenzen, K. I. Kim, H. Schäfer, R. Nair, S. Meister, F. Becker, C. S.
Garbe, and C. Theobalt, “Denoising strategies for time-of-flight data,” in
Time-of-Flight Imaging: Algorithms, Sensors and Applications, Springer
LNCS, 2013.

Linchao Bao is currently a Ph.D. student in the
Department of Computer Science at City Univer-
sity of Hong Kong. He obtained a M.S. degree in
Pattern Recognition and Intelligent Systems from
Huazhong University of Science and Technology,
Wuhan, China in 2011. His research interests reside
in computer vision and graphics.

Yibing Song is currently a master student in the
Department of Computer Science at City University
of Hong Kong. He obtained a bachelor degree in
Electrical Engineering and Information Science from
University of Science and Technology of China
in 2011. His research interests reside in computer
vision and graphics.

Qingxiong Yang (M’11) received the B.E. degree
in electronic engineering and information science
from the University of Science and Technology of
China, Hefei, China, in 2004, and the Ph.D. degree
in electrical and computer engineering from the
University of Illinois at Urbana-Champaign, Urbana,
IL, USA, in 2010. He is an Assistant Professor with
the Computer Science Department, City University
of Hong Kong, Hong Kong. His current research
interests include reside in computer vision and com-
puter graphics. He is a recipient of the Best Student

Paper Award at MMSP in 2010 and the Best Demo Award at CVPR in 2007.

Hao Yuan received the PhD degree in 2010 from
Purdue University, and the B.Eng. degree from
Shanghai Jiao Tong University in 2006. He joined
the Department of Computer Science at City Uni-
versity of Hong Kong as an assistant professor in
2010, and resigned in 2013. His research interests
include algorithms, databases, information security,
and programming languages.

Gang Wang (M’11) is an Assistant Professor with
the School of Electrical & Electronic Engineering
at Nanyang Technological University (NTU), and a
research scientist at the Advanced Digital Science
Center. He received his B.S. degree from Harbin
Institute of Technology in Electrical Engineering in
2005 and the PhD degree in Electrical and Com-
puter Engineering, University of Illinois at Urbana-
Champaign in 2010. His research interests include
computer vision and machine learning. Particularly,
he is focusing on object recognition, scene analysis,

large scale machine learning, and deep learning. He is a member of IEEE.

	Introduction
	Preliminaries and Related Work
	Edge-preserving Smoothing
	Bilateral-filter-like Techniques
	High-contrast Detail Smoothing

	Minimum Spanning Tree for Image

	Tree Filter
	Motivation
	Definition
	Explanation
	Filter Kernel
	Parameters

	Fast Implementation
	Separable Implementation
	MST Extraction

	More Analysis
	Comparison
	Limitation and Improvement
	Tree-Median Filtering
	Iterative Tree Filtering
	Multi-Tree Filtering

	Applications
	Scene Simplification
	Joint Filtering
	Texture Editing

	Conclusion
	References
	Biographies
	Linchao Bao
	Yibing Song
	Qingxiong Yang
	Hao Yuan
	Gang Wang

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

